Skip to main content
Log in

Surface plasmon polaritons based optical directional coupler

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

As a basic optical device, the optical directional coupler (ODC) is basically used as optical splitters, optic switches and so on. A novel ODC employing surface plasmon polaritons (SPPs) is proposed for high integration. The finite difference time domain (FDTD) method is adopted to simulate and analyze its properties. Results show that the ODC proposed here follows the general regulations of a conventional dielectric ODC, but its transverse size is of nanoscale, which improves the optical integration greatly. For 1550 nm and 1310 nm input wavelengths, when the coupling region length (L) equals half of its coupling length, the Excess Loss is respectively 0.57 dB and 0.56 dB, which is practical in applications. So the research on the present ODC is of some practical importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang T C, Simonis G J, Coldren L A. Directional coupler optical switch constructed from field-induced waveguides. Electr Lett, 1992, 28: 2288–2289

    Article  Google Scholar 

  2. Kishionka K. A design method to achieve wide wavelength-flattened responses in the directional coupler-type optical power splitters. J Lightwave Tech, 2001, 19(11): 1705–1715

    Article  ADS  Google Scholar 

  3. Huang W P, Little B E, Chadhuri S K. Optical wavelength filter with tapered couplers. IEEE Photon Tech Lett, 1991, 3(9): 809–812

    Article  ADS  Google Scholar 

  4. Tanaka K, Tanaka M. Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Appl Phys Lett, 2003, 82: 1158

    Article  ADS  Google Scholar 

  5. Tanaka K, Tanaka M, Sugiyama T. Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides. Opt Exp, 2004, 13(1): 256–266

    Article  ADS  Google Scholar 

  6. Wang B, Wang G P. Surface plasmon polariton propagation in nanoscale metal gap waveguides. Opt Lett, 2005, 29(17): 1992–1994

    Article  ADS  Google Scholar 

  7. Veronis G, Fan S H. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Appl Phys Lett, 2005, 87: 131102

    Article  ADS  Google Scholar 

  8. Barnes W L, Thomas A D, Ebbesen W. Surface plasmon subwavelength optics. Nature, 2003, 424: 824–830

    Article  ADS  Google Scholar 

  9. Wang G P, Sugiura T, Kawata S. Holography with surface-plasmon-coupled waveguide modes. Appl Opt, 2001, 40(22): 3649–3653

    Article  ADS  Google Scholar 

  10. Maier S A, Atwater H A. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys, 2005, 98: 011101

    Article  ADS  Google Scholar 

  11. Matsubara K, Kawata S, Minami S. Optical chemical sensor based on surface plasmon measurement. Appl Opt, 1988, 27(6): 1160–1163

    Article  ADS  Google Scholar 

  12. Zeng J, Liang D K, Cao Z X. Study on a novel optical fiber temperature sensor on surface plasmon resonance (in Chinese). Chin J Lasers, 2004, 31(7): 838–842

    Google Scholar 

  13. Lee T W, Gray S K. Subwavelength light bending by metal slit structures. Opt Exp, 2005, 13(24): 9652–9655

    Article  ADS  Google Scholar 

  14. Zhao D G, Wang P, Jiao X J, et al. Progress in surface plasmon subwavelength optics (in Chinese). Physics, 2005, 7: 508–512

    Google Scholar 

  15. Johnson P B, Christy R W. Optical constants of the noble metals. Phys Rev B, 1972, 6: 4370–4379

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XuGuang Huang.

Additional information

Supported by the Project of Guangdong Natural Science Funds for the Research on Nano-integrated Waveguide Devices Based On Surface Plasmon Polariton (Grant No. 07117866) and the Key Project of the Natural Science Foundation of Guangdong Province of China (Grant No. 05200534)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, H., Huang, X. & Huang, J. Surface plasmon polaritons based optical directional coupler. Sci. China Ser. G-Phys. Mech. Astron. 51, 1877–1882 (2008). https://doi.org/10.1007/s11433-008-0187-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-008-0187-2

Keywords

Navigation