Skip to main content
Log in

The dynamical model and quantization of the Schwarzschild black hole

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The mass of the Schwarzschild black hole, an observable quantity, is defined as a dynamical variable, while the corresponding conjugate is considered as a generalized momentum. Then a two-dimensional phase space is composed of the two variables. In the two-dimensional phase space, a harmonic oscillator model of the Schwarzschild black hole is obtained by a canonical transformation. By this model, the mass spectrum of the Schwarzschild black hole is firstly obtained. Further the horizon area operator, quantum area spectrum and entropy are obtained in the Fock representation. Lastly, the wave function of the horizon area is derived also.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bekenstein J D. Black hole and entropy. Phys Rev D, 1973, 7(8): 2333–2346

    Article  ADS  MathSciNet  Google Scholar 

  2. Hawking S W. Particle creation by black hole. Commun Math Phys, 1975, 43(3): 199–220

    Article  ADS  MathSciNet  Google Scholar 

  3. Zhu J Y, Zhang J H, Zhao Z. Hawking radiation of charged Dirac particle in Vaidya-Bonner space-time. Sci China A-Math Phys Astron, 1995, 38(2): 217–226

    MATH  Google Scholar 

  4. Li X, Zhao Z. Entropy of a Vaidya black hole. Phys Rev D, 2000, 62(10): 104001-1–4

    Article  ADS  MathSciNet  Google Scholar 

  5. ’t Hooft G. On the quantum structure of a black hole. Nucl Phys, 1985, 256: 727–745

    Article  ADS  MathSciNet  Google Scholar 

  6. Liu W B, Zhao Z. Entropy of the Dirac field in a Kerr-Newman black hole. Phys Rev D, 2000, 61: 063003-1–4

    MathSciNet  Google Scholar 

  7. Gao C J, Shen Y G. Entropy of three-dimensional BTZ black holes. Sci China Ser G-Phys Mech Astron, 2004, 47(3): 277–283

    Article  ADS  MathSciNet  Google Scholar 

  8. Wu Z C, Xu D H. Constrained instanton and black hole creation. Sci China Ser G-Phys Mech Astron, 2004, 47(3): 293–309

    Article  ADS  Google Scholar 

  9. Li C A. Formula for black hole’s Planck absolute entropy. Acta Phys, 2001, 50(5): 986–989

    Google Scholar 

  10. Yang S Z, Li H L, Jiang Q Q, et al. The research on the quantum tunneling characteristics and the radiation spectrum of the stationary axisymmetric black. Sci China Ser G-Phys Mech Astron, 2007, 50(2): 249–260

    Article  MATH  Google Scholar 

  11. Liu C Z. The information entropy of a static dilaton black hole. Sci China Ser G-Phys Mech Astron, 2008, 51(2): 113–125

    Article  MATH  ADS  Google Scholar 

  12. Bekenstein J D, Gour G. Building blocks of a black hole. Phys Rev D, 2002, 66(2): 024005-1–7

    Article  ADS  MathSciNet  Google Scholar 

  13. Louko J, Mäkelä J. Area spectrum of the Schwarzschild black hole. Phys Rev D, 1996, 54(8): 4982–4996

    Article  ADS  MathSciNet  Google Scholar 

  14. Mäkelä J, Repo P. Quantum-mechanical model of the Rerssner-Nordström black hole. Phys Rev D, 1998, 57(8): 4889–4916

    Article  Google Scholar 

  15. Li C A, Su J Q. The resonance model and quantum area spectrum of Kerr-Newman black hole. Acta Phys, 2006, 55(9): 4433–4436

    Google Scholar 

  16. Jiang J J, Li C A. Quantum area spectrum of Kerr black hole and the smallest mass of micro-black hole. Acta Phys, 2005, 54(8): 3958–3961

    Google Scholar 

  17. Gour G, Medved A J M. Quantum spectrum for a Kerr-Newman black hole. Class Quantum Grav, 2003, 20: 1661–1671

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Li X, Shen Y G. Quantizing the de Sitter Space-time. Phys Lett B, 2004, 602: 226–230

    Article  ADS  MathSciNet  Google Scholar 

  19. Barvinsky A, Das A, Kunstatter G. Quantum mechanics of charged black holes. Phys Lett B, 2001, 517: 415–420

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChuanAn Li.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 10773002) and the Natural Research Foundation of Heze University (Grant No. XY05WL02)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Su, J., Jiang, J. et al. The dynamical model and quantization of the Schwarzschild black hole. Sci. China Ser. G-Phys. Mech. Astron. 51, 1861–1867 (2008). https://doi.org/10.1007/s11433-008-0170-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-008-0170-y

Keywords

Navigation