Skip to main content
Log in

Abstract

Using the related formula of dynamic black holes, the instantaneous radiation energy density of the general spherically symmetric charged dynamic black hole and the arbitrarily accelerating charged dynamic black hole is calculated. It is found that the instantaneous radiation energy density of black hole is always proportional to the quartic of the temperature of event horizon in the same direction. The proportional coefficient of generalized Stefan-Boltzmann is no longer a constant, and it becomes a dynamic coefficient that is related to the event horizon changing rate, space-time structure near event horizon and the radiation absorption coefficient of the black hole. It is shown that there should be an internal relation between the gravitational field around black hole and its thermal radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bekenstein J D. Black hole and entropy. Phys Rev D, 1973, 7(8): 2333–2346

    Article  ADS  MathSciNet  Google Scholar 

  2. Hawking S W. Particle creation by black hole. Commun Math Phys, 1975, 43(3): 199–220

    Article  ADS  MathSciNet  Google Scholar 

  3. ’t Hooft G. On the quantum structure of a black hole. Nucl Phys B, 1985, 256: 727–745

    Article  ADS  Google Scholar 

  4. Solodukhin S N. Conical singularity and quantum corrections to the entropy of a black hole. Phys Rev D, 1995, 51: 609–617

    Article  ADS  MathSciNet  Google Scholar 

  5. Zhao R, Zhang J F, Zhang L C. Statistical entropy in Reissner-Nordström black hole. Nucl Phys B, 2001, 609: 247–252

    Article  MathSciNet  Google Scholar 

  6. Ho J, Kin W T, Park Y J, et al. Entropy in the Kerr-Newmann black hole. Class Quantum Grav, 1997, 14(9): 2617–2626

    Article  MATH  ADS  Google Scholar 

  7. Li X, Zhao Z. Entropy of a Vaidya-de Sitter space-time. Chin Phys Lett, 2001, 18(3): 463–465

    Article  ADS  Google Scholar 

  8. Liu W B, Zhao Z. An improved thin film brick-wall model of black hole entropy. Chin Phys Lett, 2001, 18(2): 310–312

    Article  ADS  Google Scholar 

  9. Li X. Black hole entropy without brick walls. Phys Lett B, 2002, 540(1–2): 9–13

    MATH  ADS  MathSciNet  Google Scholar 

  10. He H, Zhao Z. Entropy of the straightly accelerating non-stationary black hole. Acta Phys Sin, 2002, 51(8): 2661–2666

    Google Scholar 

  11. Li C A, Meng Q M, Su J Q. Statistical entropy of the Dirac field of static spherically symmetric black holes. Acta Phys Sin, 2002, 51(8): 1901–1905

    Google Scholar 

  12. Zhu B, Yao G Z, Zhao Z. Entropy of a rectilinearly accelerating non-stationary black hole with electric charges and magnetic charges. Acta Phys Sin, 2002, 51(11): 2656–2660

    Google Scholar 

  13. Meng Q M, Su J Q, Li C A. The statistical entropy of Dirac field in spherically symmetric non-stationary black hole. Acta Phys Sin, 2003, 52(7): 1822–1826

    Google Scholar 

  14. Zhang J Y, Zhao Z. Entropy of Dirac field in a straightly accelerating non-stationary black hole. Acta Phys Sin, 2002, 51(10): 2399–2406

    MathSciNet  Google Scholar 

  15. Gao C J, Shen Y G. Entropy of three-dimensional BTZ black holes. Sci China Ser G-Phys Mech Astron, 2004, 47(3): 277–283

    Article  MathSciNet  Google Scholar 

  16. Gibbons G W, Hawking S W. Action integrals and partition functions in quantum gravity. Phys Rev D, 1977, 15: 2752–2756

    Article  ADS  MathSciNet  Google Scholar 

  17. Yang S Z, Li H L, Jiang Q Q, et al. The research on the quantum tunneling characteristics and the radiation spectrum of the stationary axisymmetric black hole. Sci China Ser G-Phys Mech Astron, 2007, 50(2): 249–260

    Article  MATH  Google Scholar 

  18. Zhang J Y, Zhao Z. Massive particles’ Hawking radiation via tunneling. Acta Phys Sin, 2006, 55(7): 3796–3798

    Google Scholar 

  19. Meng Q M. Stefan-Boltzmann’s Law of the Dirac field of static spherically symmetric black holes. Acta Phys Sin, 2003, 52(8): 2102–2104

    Google Scholar 

  20. Meng Q M, The instantaneous radiation energy density of non-stationary black holes. Acta Phys Sin, 2005, 54(1): 471–474

    Google Scholar 

  21. Zhang J H, Meng Q M, Li C A. The quantum thermal and non-thermal effects in the space-time determined by GSSEC black hole. Acta Phys Sin, 1996, 45(2): 177–184

    MathSciNet  Google Scholar 

  22. Li Z H, Zhao Z. The generalized Tortoise coordinate transformation and Hawking process. Acta Phys Sin, 1997, 46(1): 273–276

    MathSciNet  Google Scholar 

  23. Li C A, Wei X Q, Meng Q M, et al. Entropy of generalized non-stationary spherically symmetric black hole with charge. Acta Phys Sin, 2002, 51(9): 2173–2176

    Google Scholar 

  24. Niu Z F, Liu W B. A new Tortoise coordinate transformation and entropy of arbitrarily accelerating charged black hole. Acta Phys Sin, 2005, 54(1): 475–480

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QingMiao Meng.

Additional information

Supported by the Science Foundation of Heze University (Grant No. XY06WL01)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, Q., Jiang, J. The thermal radiation from dynamic black holes. Sci. China Ser. G-Phys. Mech. Astron. 51, 923–930 (2008). https://doi.org/10.1007/s11433-008-0101-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-008-0101-y

Keywords

Navigation