Skip to main content
Log in

Investigation of ion-atom collision dynamics through imaging techniques

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The principle and technique details of recoil ion momentum imaging are discussed and summarized. The recoil ion momentum spectroscopy built at the Institute of Modern Physics (Lanzhou) is presented. The first results obtained at the setup are analyzed. For 30 keV He2+ on He collision, it is found that the capture of single electron occurs dominantly into the first excited states, and the related scattering angle results show that the ground state capture occurs at large impact parameters, while the capture into excited states occurs at small impact parameters. The results manifest the collision dynamics for the sub-femto-second process can be studied through the techniques uniquely. Finally, the future possibilities of applications of the recoil ion momentum spectroscopy in other fields are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rescigno T N, Baertschy M, Isaacs W A, et al. Collisional breakup in a quantum system of three charged particles. Science, 1999, 286: 2474–2479

    Article  Google Scholar 

  2. McCurdy C W, Rescigno T N. Practical calculations of quantum breakup cross sections. Phys Rev A, 2000, 62: 32712

    Google Scholar 

  3. Schmidt-Böcking H, Mergel V, Dörner R, et al. Polarization, and ionization in atomic system. In: American Institute of Physics Conference Proceedings of Correlations. New York: American Institute of Physics, 2002. 604: 120

    Google Scholar 

  4. McGuire J H, Godunov A L, Tolmanov S G, et al. Time correlation in two-electron transitions produced in fast collisions of atoms with matter and light. Phys Rev A, 2001, 63: 052706

    Google Scholar 

  5. Barat M, Roncin P J. Multiple electron capture by highly charged ions at keV energies. Phys B: At Mol Opt Phys, 1992, 25: 2205–2243

    Article  ADS  Google Scholar 

  6. Ullrich J, Dörner R, Schmidt-Böcking H, et al. Multielectron processes. In: Berényi D, Hock G, eds. Lecture Notes in Physics. Debrecen: Springer, 1990. 376: 287–296

    Google Scholar 

  7. Schmidt-Böcking H, Dörner R, Ullrich J, et al. Multiple ionization in ion-atom collisions investigated by recoil ion momentum spectroscopy. In: Berényi D, Hock G, eds. Lecture Notes in Physics. Debrecen: Springer, 1990. 376: 268–281

    Google Scholar 

  8. Ullrich J, Moshammer R, Dörner R, et al. Recoil-ion momentum spectroscopy: Reaction-microscopes. Rep Prog Phys, 2003, 66: 1463–1545

    Article  ADS  Google Scholar 

  9. Jagutzki O, Mergel V, Ullmann-Pfleger K, et al. Proceeding of international symposium on optical science engineering and instrumentation. Proc SPIE, 1998, 3438: 322

    Article  ADS  Google Scholar 

  10. Dörner R, Vergel V, Spielberger L, et al. Kinematically complete experiments using cold target recoil ion momentum spectroscopy. Nucl Instr Meth B, 1997, 124: 225–231

    Article  ADS  Google Scholar 

  11. Moshammer R, Perumal A, Schulz M, et al. Three-body Coulomb problem probed by mapping the Bethe surface in ionizing ion-atom collisions. Phys Rev Lett, 2001, 87: 223201

    Google Scholar 

  12. Fischer D, Feuerstein B, Dubois R D, et al. State resolved measurement of single electron capture in slow Ne7+ and Ne8+-Helium collisions. J Phys B, 2002, 35, 1369–1377

    ADS  Google Scholar 

  13. Moshammer R, Fainstein P D, Schulz M, et al. Initial state dependence of low energy electron emission in fast ion atom collisions. Phys Rev Lett, 1999, 83: 4721–4724

    Article  ADS  Google Scholar 

  14. Spielberger L, Jagutzki O, Dörner R, et al. Separation of photoabsorption and Compton scattering contributions to He single and double ionization. Phys Rev Lett, 1995, 74: 4615–4618

    Article  ADS  Google Scholar 

  15. Knapp A, Kheifets A, Bray I, et al. Mechanisms of photo double ionization of helium by 530 eV photons. Phys Rev Lett, 2002, 89: 033004

    Google Scholar 

  16. Ma X W, Liu H P, Chen X M, et al. Transfer ionization cross-section measured in collisions of highly charged argon ions with neon target. Sci China Ser G-Phys Mech Astron, 2003, 46: 552–560

    Article  ADS  Google Scholar 

  17. Zhang S F, Ma X W, Liu H P, et al. Properties and applications of cold supersonic gas jet. Sci China Ser G-Phys Mech Astron, 2006, 49(6): 709–715

    Article  MathSciNet  Google Scholar 

  18. Zhu X L, Ma X W, Sha S, et al. Two-dimention delay-line microchannel plate imaging detector. Nucl Electr Det Tech, 2004, 24: 253–256

    Google Scholar 

  19. Feng W T, Ma X W, Liu H P, et al. Test and analysis of uniform magnetic fields for imaging of electrons produced in ion-atom collisions. Acta Phys Sin (in Chinese), 2007, 56: 3637–3641

    Google Scholar 

  20. Fritsch W. Theoretical study of electron processes in slow He2+-He collisions. J Phys B-At Mol Opt Phys, 1994, 27: 3461–3474

    Article  ADS  Google Scholar 

  21. Zhu X L, Ma X W, Li B, et al. State-selective electron capture for keV He2+ ions on helium collisions studied by recoil momentum spectroscopy. Chin Phys Lett, 2006, 23: 587–590

    Article  ADS  Google Scholar 

  22. Li B, Ma X W, Zhu X L, et al. Average energy loss measured in single and double electron capture collisions of He2+ on Ar at low velocities. Chin Phys Lett, 2006, 23: 1452–1456

    Article  ADS  Google Scholar 

  23. Anton J, Fricke B, Ma X, et al. The many-particle scattering system He++ on He: Experiment and a complete unified description. Phys Lett A, 2007, 369: 85–89

    Article  ADS  Google Scholar 

  24. Schmidt-Böcking H, Mergel V, Schmidt L, et al. Dynamics of ionization processes studied with the COLTRIMS method—New insight into e-e correlation. Rad Phys Chem, 2003, 68: 41–50

    Article  ADS  Google Scholar 

  25. Dörner R, Mergel V, Jagutzki O, et al. Cold target recoil ion momentum spectroscopy: A ‘momentum microscope’ to view atomic collision dynamics. Phys Rep, 2000, 330: 95–192

    Article  ADS  Google Scholar 

  26. Dürr M, Dorn A, Ullrich J, et al. (e, 3e) on helium at low impact energy: The strongly correlated three-electron continuum. Phys Rev Lett, 2007, 98: 193201

    Google Scholar 

  27. Cao S P, Ma X W, Dorn A, et al. Correlation of emitted electrons in near threshold double ionization of helium by electron impact. Acta Phys Sin (in Chinese), 2007, 56: 6386–6392

    Google Scholar 

  28. Cao S P, Ma X W, Dorn A, et al. Analysis of recoil ion momentum in near threshold double ionization of helium by electron impact. Nucl Phys Rev (in Chinese), 2007, 24: 208–213

    Google Scholar 

  29. Koonp S, Turkstra J W, Morgenstern R, et al. Multi-electron processes in slow He2+-Na collisions measured with MOTRIMS. Nucl Instr Meth B, 2003, 205: 560–567

    Article  ADS  Google Scholar 

  30. Ergler Th, Rudenko A, Feuerstein B, et al. Spatio-temporal imaging of ultrafast molecular motion: Collapse and revival of the D2 + nuclear wave packet. Phys Rev Lett, 2006, 97: 193001

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XinWen Ma.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 10434100)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, X., Zhu, X., Liu, H. et al. Investigation of ion-atom collision dynamics through imaging techniques. Sci. China Ser. G-Phys. Mech. Astron. 51, 755–764 (2008). https://doi.org/10.1007/s11433-008-0096-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-008-0096-4

Keywords

Navigation