Skip to main content
Log in

Abstract

We investigated the quantum entanglement in spin-1 Heisenberg XY chain for two-spin-qutrit and multi-particle systems. As a measure of the entanglement, the negativity of this state was analyzed as a function of the temperature and the magnetic field. We gave some numerical results and discussed them in detail. We found that the negativity increases monotonously with the coupling constants |J 1| and |J 2|, and it showed a symmetry with respect to the point of J 1 = 0 and J 2 = 0. In addition to the above features, there is evidence that the critical temperature is independent of the length of the chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C H, Brassard F, Crepear C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1993, 70(13): 1895

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Ekert A K. Quantum cryptography based on Bell’s theorem. Phys Rev Lett, 1991, 67(6): 661

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Divincenzo D P, Eacon D, Kempe J, et al. Universal quantum computation with the exchange interaction. Nature, 2000, 408(6810): 339

    Article  ADS  Google Scholar 

  4. Bollinger J J, Itano W H, Wineland D J, et al. Optimal frequency measurements with maximally correlated states. Phys Rev A, 1996, 54(6): 4649

    Article  ADS  Google Scholar 

  5. Loss D, DiVincenzo D P. Quantum computation with quantum dots. Phys Rev A, 1998, 57(1): 120

    Article  ADS  Google Scholar 

  6. Burkard G, Loss D, DiVincenzo D P. Coupled quantum dots as quantum gates. Phys Rev B, 1999, 59(3): 2070

    Article  ADS  Google Scholar 

  7. Kane B E. A silicon-based nuclear spin quantum computer. Nature, 1998, 393(6681): 133–137

    Article  ADS  Google Scholar 

  8. Zheng S B, Guo G C. Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys Rev Lett, 2000, 85(11): 2392

    Article  ADS  Google Scholar 

  9. Nielsen M A. Quantum information theory. Dissertation for the Doctor Degree. American: University of New Mexico, 1998

    Google Scholar 

  10. Wang X G. Entanglement in the quantum Heisenberg XY Model. Phys Rev A, 2001, 64(1): 012313

    Google Scholar 

  11. Wang X G. Thermal and ground-state entanglement in Heisenberg XX qubit rings. Phys Rev A, 2002, 66(3): 034302

    Google Scholar 

  12. Arnesen M C, Bose S, Vedral V. Natural thermal and magnetic entanglement in the 1D Heisenberg model. Phys Rev Lett, 2001, 87(1): 017901

    Google Scholar 

  13. Kamta G L, Starace A F. Anisotropy and magnetic field effects on the entanglement of a two qubit Heisenberg XY chain. Phys Rev Lett, 2002, 88(10): 107901

    Google Scholar 

  14. Wang X G. Effects of anisotropy on thermal entanglement. Phys Lett A, 2001, 281: 101

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Zhou L, Song H S, Guo Y Q, et al. Enhanced thermal entanglement in an anisotropic Heisenberg XYZ chain. Phys Rev A, 2003, 68(2): 024301

  16. Liu D, Zhang Y, Liu Y, et al. Entanglement in the ground state of an isotropic three-qubit transverse XY chain with energy current. Chin Phys Lett, 2007, 24(1): 8–10

    Article  ADS  Google Scholar 

  17. Liu D, Zhang Y, Long G L. Influence of magnetic current to the ground state entanglement in an isotropic transverse XY chain. Progr Nat Sci, 2007, 17: 1147–1151

    Google Scholar 

  18. William K W. Entanglement of formation of an arbitrary state of two qubits. Phys Rev Lett, 1998, 80(10): 2245–2248

    Article  ADS  Google Scholar 

  19. Vidal G, Werner R F. Computable measure of entanglement. Phys Rev A, 2002, 65: 032314

    Google Scholar 

  20. Schliemann J. Entanglement in SU(2)-invariant quantum spin systems. Phys Rev A, 2003, 68: 012309

    Google Scholar 

  21. Zhou L, Yi X X, Song H S, et al. Thermal entanglement in 1D optical lattice chains with nonlinear coupling. Chin Phys, 2005, 14: 1168–1173

    Article  ADS  Google Scholar 

  22. Zhang G F, Li S S. Entanglement in a spin-one chain. S S Comm, 2006, 138: 17–21

    Article  Google Scholar 

  23. Zhang G F. Thermal entanglement in a two-spin-qutrit system under a nonuniform external magnetic field. Eur Phys J D, 2006, 37: 123–127

    Article  ADS  Google Scholar 

  24. Sun Z, Wang X, Li Y Q. Entanglement in dimerized and frustrated spin-one Heisenberg chains. N J Phys, 2005, 7: 83

    Article  MathSciNet  Google Scholar 

  25. Wang X, Li H B, Sun Z, et al. Entanglement in spin-1 Heisenberg chains. J Phys A, 2005, 38: 870

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Qin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, M., Tao, Y., Hu, M. et al. Entanglement in spin-1 Heisenberg XY chain. Sci. China Ser. G-Phys. Mech. Astron. 51, 817–822 (2008). https://doi.org/10.1007/s11433-008-0087-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-008-0087-5

Keywords

Navigation