Skip to main content
Log in

An accurately fast algorithm of calculating reflection/transmission coefficients

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

For the boundary between transversely isotropic media with a vertical axis of symmetry (VTI media), the interface between a liquid and a VTI medium, and the free-surface of an elastic half-space of a VTI medium, an accurately fast algorithm was presented for calculating reflection/transmission (R/T) coefficients. Specially, the case of post-critical angle incidence was considered. Although we only performed the numerical calculation for the models of the VTI media, the calculated results can be extended to the models of transversely isotropic media with a horizontal axis of rotation symmetry (HTI media). Compared to previous work, this algorithm can be used not only for the calculation of R/T coefficients of the boundary between ellipsoidally anisotropic media, but also for that between generally anisotropic media, and the speed and accuracy of this algorithm are faster and higher. According to the anisotropic parameters of some rocks given by the published literature, we performed the calculation of R/T coefficients by using this algorithm and analyzed the effect of the rock anisotropy on R/T coefficients. We used Snell’s law and the energy balance principle to perform verification for the calculated results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zoeppritz K. On the reflection and penetration of seismic waves through unstable layers. Göttinger Nachr, 1919, 1(7B): 66–84

    Google Scholar 

  2. Richards P G, Frasier C W. Scattering of elastic waves from depth-dependent inhomogeneties. Geophysics, 1976, 44: 441–458

    Article  Google Scholar 

  3. Aki K, Richards P G. Quantitative Seismology: Theory and Methods. New York: Freeman, 1980. Vol. 1

    Google Scholar 

  4. Shuey R T. A simplification of Zoeppriz equations. Geophysics, 1985, 50: 609–614

    Article  ADS  Google Scholar 

  5. Thomsen L. Poisson was not a geophysicist. Leading Edge, 1990, 9: 27–29

    Article  Google Scholar 

  6. Fa L, Ma H F. Design of a new type of array transmitting sonic sonde. Acta Petrolei Sinica (in Chinese), 1991, 12: 52–57

    Google Scholar 

  7. Che X H, Zhang H L, Qiao W X, et al. Numerical study on scanning radiation acoustic field information generated from a borehole. Sci China Ser G-Phys Mech Astron, 2005, 48(2): 247–256

    Article  ADS  Google Scholar 

  8. Chen D H, Wang X M, Cong J S, et al. Experimental studies on perturbed acoustic resonant spectroscopy by a small rock sample in a cylindrical cavity. Sci China Ser G-Phys Mech Astron, 2006, 49(6): 683–701

    Article  Google Scholar 

  9. Ostrander W J. Plane wave reflection coefficients for gas sands at nonnormal angles of incidence. In: Proc. of 52nd Ann. Internat. Mtg., Soc. Expl. Geophys., Dallas, USA, 1982. 296–298

  10. Li J Y, Chen X H, Hao Z J, et al. A study on multiple time-lapse seismic AVO inversion. Chin J Geophys, 2005, 48: 902–908

    Google Scholar 

  11. Wright J. The effects of transverse isotropy on reflection amplitude versus offset. Geophysics, 1987, 52: 564–567

    Article  ADS  Google Scholar 

  12. Banik N C. An effective anisotropy parameter in transversely isotropic media. Geophysics, 1987, 52: 1654–1664

    Article  ADS  Google Scholar 

  13. Kim K Y, Wrolstad K H, Aminzadeh F. Effects of transverse isotropy on P-wave AVO for gas sands. Geophysics, 1993, 58: 883–888

    Article  ADS  Google Scholar 

  14. Rüger A. P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry. Geophysics, 1997, 62: 713–722

    Article  ADS  Google Scholar 

  15. Lu M H, Kang J H, Yang H Z, et al. P-wave travel time analysis and Thomsen parameter inversion in orthorhombic media. Chin J Geophys, 2005, 48: 1167–1171

    Google Scholar 

  16. Musgrave M J P. Crystal Acoustics. San Francisco: Holden Day, 1970

    MATH  Google Scholar 

  17. Henneke E G. Reflection-refraction of a stress wave at a plane boundary between anisotropic media. J Acoust Soc Am, 1972, 51: 210–217

    Article  ADS  MATH  Google Scholar 

  18. Keith C, Crampin S. Seismic body waves in anisotropic media: Reflection and refraction at a plane interface. Geophys J Roy Astron Soc, 1977, 49: 181–208

    Google Scholar 

  19. Daley P F, Hron F. Reflection and transmission coefficients for transversely isotropic media. Bull Seismol Soc Am, 1977, 67: 661–675

    Google Scholar 

  20. Fa L, Brown R L, Castagna J P. Anomalous post-critical refraction behavior for certain transversely isotropic media. J Acoust Soc Am, 2006, 120: 3479–3492

    Article  ADS  Google Scholar 

  21. Carcione J M. Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic and Porous Media. Amsterdam: Elsevier, 2001

    Google Scholar 

  22. Castagna J P, Backus M M. Offset-dependent Reflectivity-theory and Practice of AVO Analysis. Tulsa: Soc. Explor. Geophys., 1993. 3–36

    Google Scholar 

  23. Daley P F, Hron F. Reflection and transmission coefficients for seismic waves in ellipsoidally isotropic media. Geophysics, 1979, 44: 27–38

    Article  ADS  Google Scholar 

  24. Klimeš L. Weak-contrast reflection-transmission coefficients in a generally anisotropic background. Geophysics, 2003, 68, 2063–2071

    Article  ADS  Google Scholar 

  25. Rudzki M J P. Über die Gestalt elastischer Wellen in Gesteinen (II): Studie aus der Theorie der Erdbebenwellen. Anzeiger der Akademie der Wissenschaften Krakau, 1897, 387–393

  26. Rudzki M J P. Über die Gestalt elastischer Wellen in Gesteinen (IV): Studie aus der Theorie der Erdbebenwellen. Anzeiger der Akademie der Wissenschaften Krakau, 1898, 373–384

  27. Backus G L. Long-wave elastic anisotropy produced by horizontal layering. J Geophys Res, 1962, 67: 4427–4440

    Article  ADS  Google Scholar 

  28. Ĉervenŷ V. Seismic Ray Theory. Cambridge: Cambridge University Press, 2001

    MATH  Google Scholar 

  29. Thomsen L. Weak elastic anisotropy. Geophysics, 1986, 51: 1954–1966

    Article  ADS  Google Scholar 

  30. Vernik L, Nur A. Ultrasonic velocity and anisotropy of hydrocarbon source rocks. Geophysics, 1992, 57: 727–735

    Article  ADS  Google Scholar 

  31. Wang Z. Seismic anisotropy in sedimentary rocks, part 2: Laboratory data. Geophysics, 2002, 67: 1423–1440

    Article  ADS  Google Scholar 

  32. Auld B A. Acoustic Fields and Waves in Solids. New York: John Wiley and Sons, 1973

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Fa.

Additional information

Supported by the Natural Science Foundation of Shaanxi Province, China (Grant No. 2007D15)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fa, L., Castagna, J.P. & Dong, H. An accurately fast algorithm of calculating reflection/transmission coefficients. Sci. China Ser. G-Phys. Mech. Astron. 51, 823–846 (2008). https://doi.org/10.1007/s11433-008-0076-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-008-0076-8

Keywords

Navigation