Skip to main content
Log in

Local electronic structure and magnetic properties of 3d transition metal doped GaAs

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The local electronic structure and magnetic properties of GaAs doped with 3d transition metal (Sc, Ti, V, Cr, Mn, Fe, Co, Ni) were studied by using discrete variational method (DVM) based on density functional theory. The calculated result indicated that the magnetic moment of transition metal increases first and then decreases, and reaches the maximum value when Mn is doped into GaAs. In the case of Mn concentration of 1.4%, the magnetic moment of Mn is in good agreement with the experimental result. The coupling between impure atoms in the system with two impure atoms was found to have obvious variation. For different transition metal, the coupling between the impure atom and the nearest neighbor As also has different variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science, 1998, 281: 951–956

    Article  ADS  Google Scholar 

  2. Bergqvist L, Korzhavyi P A. Magnetic and electronic structure of (Ga1−x Mnx)As. Phys Rev B, 2003, 67: 205201(1)–205201(9)

    Article  ADS  Google Scholar 

  3. Jain M, Kronik L. Electronic structure and spin polarization of Mn-containing dilute magnetic III–V semiconductors. Phys Rev B, 2001, 64: 245205(1)–245205(5)

    Article  ADS  Google Scholar 

  4. Craco L, Laad M S. Ab initio description of the diluted magnetic semiconductor Ga1−x MnxAs: Ferromagnetism, electronic structure, and optical response. Phys Rev B, 2003, 68: 233310(1)–233310(4)

    Article  ADS  Google Scholar 

  5. Yang Z X. Electronic structure of Mn on the GaAs(001) surface. Phys Rev B, 1997, 56(11): 6727–6731

    Article  ADS  Google Scholar 

  6. Sanvito S. First-principles study of the origin and nature of ferromagnetism in Ga1−x MnxAs. Phys Rev B, 2001, 68: 165206(1)–165206(13)

    ADS  Google Scholar 

  7. Dietl T, Ohno H. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys Rev B, 2001, 63: 195205(1)–195205(21)

    Article  ADS  Google Scholar 

  8. Hayashi T, Yoshiaki H. Effect of low-temperature annealing on transport and magnetism of diluted magnetic semiconductor (Ga,Mn)As. Appl Phys Lett, 2001, 78(12): 1691–1693

    Article  ADS  Google Scholar 

  9. Xu J L, Van Schilfgaarde M. Role of disorder in Mn:GaAs, Cr:GaAs, and Cr:GaN. Phys Rev Lett, 2005, 94: 097201(1)–097201(4)

    ADS  Google Scholar 

  10. Ellis D E, Painter G S. Discrete variational method for the energy-band problem with general crystal potentials. Phys Rev B, 1970, 2: 2887–2898

    Article  ADS  Google Scholar 

  11. Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev, 1964, 136(3B): 864–871

    Article  ADS  MathSciNet  Google Scholar 

  12. Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys Rev, 1965, 140(4A): 1133–1138

    Article  ADS  MathSciNet  Google Scholar 

  13. Shioda R, Ando K. Local structures of III-V diluted magnetic semiconductors Ga1−x MnxAs studied using extended X-ray-absorption fine structure. Phys Rev B, 1998, 58(3): 1100–1102

    Article  ADS  Google Scholar 

  14. Sullivan J M, Boishin G I. Cross-sectional scanning tunneling microscopy of Mn-doped GaAs: Theory and experiment. Phys Rev B, 2003, 68: 235324(1)–235324(6)

    Article  ADS  Google Scholar 

  15. Tuomisto F, Pennamen K. Ga sublattice defects in (Ga,Mn)As: Thermodynamical and kinetic trends. Phys Rev Lett, 2004, 93(5): 055505(1)–055505(4)

    Article  ADS  Google Scholar 

  16. Ohno H, Matsukuta F. Spin-dependent tunneling and properties of ferromagnetic (Ga,Mn)As (invited). J Appl Phys, 1999, 85(8): 4277–4282

    Article  ADS  Google Scholar 

  17. Ohno H, Shen A. (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl Phys Lett, 1996, 69(3): 363–365

    Article  ADS  Google Scholar 

  18. Sapega V F, Moreno M. Electronic structure of Mn ions in (Ga,Mn)As diluted magnetic semiconductor. Phys Rev B, 2002, 66: 075217(1)–075217(6)

    Article  ADS  Google Scholar 

  19. Ando K, Hayashi T. Magneto-optic effect of the ferromagnetic diluted magnetic semiconductor Ga1−x MnxAs. J Appl Phys, 1998, 83(11): 6548–6550

    Article  ADS  Google Scholar 

  20. Ohldag H, Solinus V. Magnetic moment of Mn in the ferromagnetic semiconductor (Ga0.98Mn0.02)As. Appl Phys Lett, 2000, 76: 2928–2930

    Article  ADS  Google Scholar 

  21. Tanaka M. Epitaxial ferromagnetic thin films and heterostructures of Mn-based metallic and semiconducting compounds on GaAs. Physica E, 1998, 2: 372–380

    Article  ADS  Google Scholar 

  22. Morse M D. Clusters of transition-metal atoms. Chem Rev, 1986, 86: 1049–1109

    Article  Google Scholar 

  23. Koutecky J, Fantucci P. Theoretical aspects of metal atom clusters. Chem Rev, 1986, 86: 539–587

    Article  Google Scholar 

  24. Delley B, Ellis D E. Binding energy and electronic structure of small copper particles. Phys Rev B, 1983, 27: 2132–2144

    Article  ADS  Google Scholar 

  25. Saito H, Mishima Y. Magnetic and transport properties of III-V diluted magnetic semiconductor Ga1−x CrxAs. J Appl Phys, 2001, 89: 7392–7394

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaiMing Duan.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 10347010)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, H., Duan, H. Local electronic structure and magnetic properties of 3d transition metal doped GaAs. Sci. China Ser. G-Phys. Mech. As 51, 470–480 (2008). https://doi.org/10.1007/s11433-008-0056-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-008-0056-z

Keywords

Navigation