Skip to main content
Log in

Formation, thermal stability and mechanical properties of Ti42.5Zr7.5Cu40Ni5Sn5 bulk metallic glass

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstracts

Ti42.5Zr7.5Cu40Ni5Sn5 bulk metallic glass with a critical diameter of 4 mm was fabricated by the conventional copper mould casting method. The supercooled liquid region ΔT x, reduced glass transition temperature T rg, γ parameter, and δ parameter of the alloy were measured to be 63.9 K, 0.561, 0.393, and 1.400, respectively, implying that the alloy has an excellent glass-forming ability. The bulk metallic glass exhibits high compressive fracture strength of 2162 MPa with distinct plastic strain of 0.9%. The fracture surface consists mainly of vein-like patterns, typical of bulk glassy alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Peker A, Johnson W L. A highly processing metallic glass: Zr41.2Ti13.8Cu12.5Ni10Be22.5. Appl Phys Lett, 1993, 63: 2342–2344

    Article  ADS  Google Scholar 

  2. Liu Y H, Wang G, Wang R J, et al. Super plastic bulk metallic glasses at room temperature. Science, 2007, 315: 1385–1388

    Article  ADS  Google Scholar 

  3. He L, Sun J. Effect of microalloying on glass-forming ability and crystallization kinetics of Zr52.5Cu17.9Ni14.6Al10Ti5 alloy. Script Mater, 2006, 54: 1081–1085

    Article  Google Scholar 

  4. Jing Q, Liu R P, Shao G J, et al. Preparation and super-plastic deformation of the Zr-based bulk metallic glass. Mater Sci Eng A, 2003, 359: 402–404

    Article  Google Scholar 

  5. Shen J, Chen Q J, Sun J F, et al. Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy. Appl Phys Lett, 2005, 86: 151907

    Article  ADS  Google Scholar 

  6. Choi-Yim H, Xu D H, Johnson W L. Ni-based bulk metallic glass formation in the Ni-Nb-Sn and Ni-Nb-Sn-X (X=B, Fe, Cu) alloy systems. Appl Phys Lett, 2003, 82: 1030–1032

    Article  ADS  Google Scholar 

  7. Qiu C L, Chen Q, Liu L. A novel Ni-free Zr-based bulk metallic glass with enhanced plasticity and good biocompatibility. Script Mater, 2006, 55: 605–608

    Article  Google Scholar 

  8. Xu D H, Duan G, Johnson W L. Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys Rev Lett, 2004, 92(24): 245504

    Article  ADS  Google Scholar 

  9. Dai C L, Guo H, Shen Y, et al. A new centimeter-diameter Cu-based bulk metallic glass. Script Mater, 2006, 54: 1403–1408

    Article  Google Scholar 

  10. Zhang Q S, Zhang H F, Deng Y F, et al. Bulk metallic glass formation of Cu-Zr-Ti-Sn alloys. Script Mater, 2003, 49: 273–278

    Article  Google Scholar 

  11. Guo F Q, Wang H J, Poon S J, et al. Ductile titanium-based glassy alloy ingots. Appl Phys Lett, 2005, 86: 091907

    Article  ADS  Google Scholar 

  12. Inoue A, Kohinata M, Tsai A P, et al. Mg-Ni-La amorphous alloys with a wide supercooled liquid region. Mater Trans, 1989, 30(5): 378–381

    Google Scholar 

  13. Huang Y J, Shen J, Sun J F, et al. A new Ti-Zr-Hf-Cu-Ni-Si-Sn bulk amorphous alloy with high glass-forming ability. J Alloys Compd, 2007, 427: 171–175

    Article  Google Scholar 

  14. Tanner L E, Ray R. Physical properties of Ti50Be40Zr10 glass. Script Metall, 1977, 11(9): 783–789

    Article  Google Scholar 

  15. Inoue A, Nishiyama N, Amiya K, et al. Ti-based amorphous alloys with a wide supercooled liquid region. Mater Lett, 1994, 19(3–4): 131–135

    Article  Google Scholar 

  16. Zhang T, Inoue A, Masumoto T. Amorphous (Ti, Zr, Hf)-Ni-Cu ternary alloys with a wide supercooled liquid region. Mater Sci Eng A, 1994, 181–182: 1423–1426

    Google Scholar 

  17. Zhang T, Inoue A. Thermal and mechanical properties of Ti-Ni-Cu-Sn amorphous alloys with a wide supercooled liquid region before crystallization. Mater Trans, 1998, 39(10): 1001–1006

    Google Scholar 

  18. Zhang T, Inoue A. Preparation of Ti-Cu-Ni-Si-B amorphous alloys with a large supercooled liquid region. Mater Trans, 1999, 40(4): 301–306

    Google Scholar 

  19. Kim Y C, Na J H, Park J M, et al. Role of nanometer-scale quasicrystals in improving the mechanical behavior of Ti-based bulk metallic glasses. Appl Phys Lett, 2003, 83(15): 3093–3095

    Article  ADS  Google Scholar 

  20. Kissinger H E. Reaction kinetics in differential thermal analysis. Anal Chem, 1957, 29(11): 1702–1706

    Article  Google Scholar 

  21. Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater, 2000, 48(1): 279–306

    Article  Google Scholar 

  22. Turnbull D. Under what conditions can a glass be formed. Contemp Phys, 1969, 10(5): 473–488

    Article  ADS  Google Scholar 

  23. Lu Z P, Liu C T. Glass formation criterion for various glass-forming systems. Phys Rev Lett, 2003, 91(11): 115505

    Google Scholar 

  24. Chen Q J, Shen J, Zhang D L, et al. A new criterion for evaluating the glass-forming ability of bulk metallic glasses. Mater Sci Eng A, 2006, 433: 155–160

    Article  Google Scholar 

  25. Zhang T, Inoue A. Ti-based amorphous alloys with a large supercooled liquid region. Mater Sci Eng A, 2001, 304–306: 771–774

    Google Scholar 

  26. Kim Y C, Kim W T, Kim D H. A development of Ti-based bulk metallic glass. Mater Sci Eng A, 2004, 375–377: 127–135

    Google Scholar 

  27. Men H, Pang S J, Inoue A, et al. New Ti-based bulk metallic glasses with significant plasticity. Mater Trans, 2005, 46: 2218–2220

    Article  Google Scholar 

  28. Wu X F, Suo Z Y, Si Y, et al. Bulk metallic glass formation in a ternary Ti-Cu-Ni alloy system. J Alloys Comp, 2006

  29. Zhu S L, Wang X M, Qin F X, et al. A new Ti-based bulk glassy alloy with potential for biomedical application. Mater Sci Eng A, 2007, 459: 233–237

    Article  Google Scholar 

  30. Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans, 2005, 46(12): 2817–2829

    Article  Google Scholar 

  31. Zhang Z F, Eckert J, Schultz L. Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater, 2003, 51: 1167–1179

    Article  Google Scholar 

  32. Liu C T, Heatherly L, Eaton D S, et al. Test environments and mechanical properties of Zr-base bulk amorphous alloys. Metall Mater Trans A, 1998, 29: 1811–1820

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Shen.

Additional information

Supported by the Program for New Century Excellent Talents in University of China and the National Natural Science Foundation of China (NSFC)(Grant No. 50771040)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Shen, J. & Sun, J. Formation, thermal stability and mechanical properties of Ti42.5Zr7.5Cu40Ni5Sn5 bulk metallic glass. Sci. China Ser. G-Phys. Mech. As 51, 372–378 (2008). https://doi.org/10.1007/s11433-008-0049-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-008-0049-y

keywords

Navigation