Skip to main content
Log in

Bang-bang control suppression of amplitude damping in a three-level atom

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

By using quantum bang-bang control technique, we studied the suppression of amplitude damping, or energy dissipation, in a three-level atom in various configurations. We have explicitly given the bang-bang control groups in three different configurations, and the pulse sequences for these bang-bang control operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang M G, Tarn T J, Clark J W. On the controllability of quantum mechanical systems. J Math Phys, 1983, 24: 2608–2618

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Tarn T J, Clark J W, Ong C K, et al. Invertibility of quantum-mechanical control systems. Math Syst Theor, 1984, 17: 335–350

    Article  MATH  MathSciNet  Google Scholar 

  3. Tarn T J, Clark J W, Ong C K. Quantum nondemolition filters. Math Syst Theor, 1985, 18: 33–35

    Article  MATH  MathSciNet  Google Scholar 

  4. Tannor D J, Rice S A. Coherent pulse sequence control of product formation in chemical reactions. Adv Chem Phys, 1987, 70: 441–523

    Article  Google Scholar 

  5. Brumer P, Shapiro M. coherence chemistry: Controlling chemical reactions. Acc Chem Res, 1989, 22: 407–413

    Article  Google Scholar 

  6. Rabitz H, Shi S H. Selective excitation in harmonic molecular systems by optimally designed fields. Chem Phys, 1989, 139: 185–199

    Article  ADS  Google Scholar 

  7. Lloyd S. Almost any quantum logic gate is universal. Phys Rev Lett, 1998, 58: 2733–2744

    MathSciNet  Google Scholar 

  8. Unruh W G. Maintaining coherence in quantum computers. Phys Rev A, 1995, 51: 992–997

    Article  ADS  MathSciNet  Google Scholar 

  9. Li Y, Yi S, You L, et al. Influence of spatial motion on atomic ensemble qubit. Sci China Ser G-Phys Mech Astron, 2003, 33: 272–280

    Google Scholar 

  10. Li S S, Long G L, Bai F S, et al. Quantum computing. Proc Nat Acad Sci USA, 2001, 98: 11847–11848

    Article  ADS  Google Scholar 

  11. Long G L, Li Y S, Zhang W L, et al. Dominant gate imperfection in Grover’s quantum search algorithm. Phys Rev A, 2000, 61: 042305

    Google Scholar 

  12. Guo H, Long G L, Sun Y. Effects of imperfect gate operations in Shor’s prime factorization algorithm. J Chin Chem Soc, 2001, 48: 449–454

    Google Scholar 

  13. Ai Q, Li Y S, Long G L. Influence of gate operation errors in the quantum counting algorithm. J Comput Sci Technol, 2006, 21: 927–936

    Article  MathSciNet  Google Scholar 

  14. Huo W Y, Long G L. A scheme to implement the Deutsch-Jozsa algorithm in a superconducting charge-qubit quantum computer. Progr Nat Sci, 2006, 16: 594–599

    Article  MATH  Google Scholar 

  15. Wu R B, Li C, Wang Y, et al. Explicity solvable extremals of time optimal control for 2-level quantum systems. Phys Lett A, 2002, 295: 20–24

    MATH  ADS  MathSciNet  Google Scholar 

  16. Cong S, Zheng Y S, Ji B C, et al. Survey of progress in quantum control system. Chin J Qua Electron (in Chinese), 2003, 20: 1–9

    Google Scholar 

  17. Chen Z H, Dong D Y. Quantum control theory. Chin J Quant Electron (in Chinese), 2004, 21: 546–554

    Google Scholar 

  18. Zhang M, Dai H Y, Hu D W, et al. Quantum generalized measurement and deterministic generation of maximum entangled pure state. Commun Theor Phys, 2006, 46: 833–837

    Google Scholar 

  19. Liu X S, Wu R B, Liu Y, et al. Decoupling bang-bang group for adiabatic decoherence control in a three-level atom. Commun Theor Phys, 2005, 44: 810–814

    Google Scholar 

  20. Wang Y H, Liu X S, Long G L. Suppression of phase and amplitude damping decoherence in a three-level atom in A-configuration using bang-bang controls. Commun Theor Phys, 2007, 48: 71–74

    Google Scholar 

  21. Liu X S, Wu R B, Liu Y, et al. Dynamical control of adiabatic decoherence in the single three-level atom. J Opt B-Quant Semiclass Opt, 2005, 7: 268–273

    Article  ADS  MathSciNet  Google Scholar 

  22. Liu X S, Liu W Z, Wu R B, et al. Control of state localization in a two-level quantum system. J Opt B-Quant Semiclass Opt, 2005, 7: 66–69

    Article  ADS  MathSciNet  Google Scholar 

  23. Wang H B, Fang X M, Hu Y H. Entropy as a measure of the noise extent in a two-level quantum feedback controlled system. Chin Phys, 2007, 16: 111–117

    Article  ADS  Google Scholar 

  24. Viola L, Lloyd S. Dynamical suppression of decoherence in two-state quantum systems. Phys Rev A, 1998, 58: 2733–2744

    Article  ADS  MathSciNet  Google Scholar 

  25. Duan L M, Guo G C. Suppressing environmental noise in quantum computation through pulse control. Phys Lett A, 1999, 261: 139–134

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Zanardi P. Symmetrizing evolutions. Phys Lett A, 1999, 258: 77–82

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Viola L, Knill E, Lloyd S. Dynamical decoupling of open quantum systems. Phys Rev Lett, 1999, 82: 2417–2421

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Vitali D, Tombesi P. Using parity kicks for decoherence control. Phys Rev A, 1999, 59: 4178–4186

    Article  ADS  Google Scholar 

  29. Haeberlen U, Waugh J S. Coherent averaging effects in magnetic resonance. Phys Rev, 1968, 175: 453–467

    Article  ADS  Google Scholar 

  30. Yan F L, Ding H W. Probabilistic teleportation of an unknown two-particle state with a four-particle pure entangled state and positive operator valued measure. Chin Phys Lett, 2006, 23: 17–19

    Article  ADS  Google Scholar 

  31. Zhang Z J. Multiparty secret sharing of quantum information via cavity QED. Opt Commun, 2006, 261: 199–202

    Article  ADS  Google Scholar 

  32. Li Y M, Zhang K S, Peng K C. Multiparty secret sharing of quantum information based on entanglement swapping. Phys Lett A, 2004, 324: 420–424

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Cao H J, Song H S. Quantum key distribution using four-qubit w state. Commun Theor Phys, 2006, 46: 65–68

    MathSciNet  Google Scholar 

  34. Barreiro J T, Langford N K, Peters N A, et al. Generation of hyperentangled photon pairs. Phys Rev Lett, 2005, 95: 260501

    Google Scholar 

  35. Chen P, Li Y S, Deng F G, et al. Measuring-basis encrypted quantum key distribution with four-state quantum system. Commun Theor Phys, 2007, 47: 49–52

    Article  Google Scholar 

  36. Wang C, Deng F G, Li Y S, et al. Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A, 2005, 71: 044305

    Google Scholar 

  37. Wang C, Deng F G, Long G L. Multi-Step Quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt Commun, 2005, 252: 15–20

    Article  ADS  Google Scholar 

  38. Xia Y, Song H S. Controlled quantum secure direct communication using a non-symmetric quantum channel with quantum superdense coding. Phys Lett A, 2007, 364: 117–122

    Article  ADS  Google Scholar 

  39. Long G L, Deng F G, Wang C, et al. Quantum secure direct communication and deterministic secure quantum communication. Front Phys Chin, 2007, 2(3): 251–272

    Article  ADS  Google Scholar 

  40. Yang Y G, Wen Q Y, Zhu F C. An efficient quantum secret sharing protocol with orthogonal product states. Sci China Ser G-Phys Mech Astron, 2007, 50(3): 331–338

    Article  ADS  Google Scholar 

  41. Yan F L, Gao T, Li Y C. Quantum secret sharing between multi-party and multi-party with four states. Sci China Ser G-Phys Mech Astron, 2007, 50(5): 572–580

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long GuiLu.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 10547003), the Key Project of Chinese Ministry of Education (Grant No. 306020) and Chifeng College Scientific Research Fund (Grant No. ZRZD200604)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, W., Liu, X., Bai, H. et al. Bang-bang control suppression of amplitude damping in a three-level atom. Sci. China Ser. G-Phys. Mech. Astron. 51, 29–37 (2008). https://doi.org/10.1007/s11433-008-0014-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-008-0014-9

Key words

Navigation