Advertisement

Specific heat and related thermophysical properties of liquid Fe-Cu-Mo alloy

  • Wang HaiPeng 
  • Luo BingChi 
  • Chang Jian 
  • Wei BingBo Email author
Article

Abstract

The specific heat and related thermophysical properties of liquid Fe77.5Cu13Mo9.5 monotectic alloy were investigated by an electromagnetic levitation drop calorimeter over a wide temperature range from 1482 to 1818 K. A maximum undercooling of 221 K (0.13 T m) was achieved and the specific heat was determined as 44.71 J·mol−1·K−1. The excess specific heat, enthalpy change, entropy change and Gibbs free energy difference of this alloy were calculated on the basis of experimental results. It was found that the calculated results by traditional estimating methods can only describe the solidification process under low undercooling conditions. Only the experimental results can reflect the reality under high undercooling conditions. Meanwhile, the thermal diffusivity, thermal conductivity, and sound speed were derived from the present experimental results. Furthermore, the solidified microstructural morphology was examined, which consists of (Fe) and (Cu) phases. The calculated interface energy was applied to exploring the correlation between competitive nucleation and solidification microstructure within monotectic alloy.

Keywords

high undercooling specific heat monotectic alloy thermophysical property rapid solidification 

References

  1. 1.
    Fecht H J, Fu Z, Johnson W L. Specific-heat anomaly during vitrification of hydrided Fe2Er single crystals. Phys Rev Lett, 1990, 64(15): 1753–1756CrossRefADSGoogle Scholar
  2. 2.
    Sung Y S, Takeya H, Hirata K, Togano K. Specific heat capacity and hemispherical total emissivity of liquid Si measured in electrostatic levitation. Appl Phys Lett, 2003, 83(6): 1122–1124CrossRefADSGoogle Scholar
  3. 3.
    Fecht H J, Perepezko J H, Lee M C, Johnson W L. Thermodynamic properties and crystallization kinetics of glass-forming undercooled liquid Au-Pb-Sb alloys. J Appl Phys, 1990, 68(9): 4494–4502CrossRefADSGoogle Scholar
  4. 4.
    Wang H P, Wei B. Surface tension and specific heat of liquid Ni70.2Si29.8 alloy. Chin Sci Bull, 2005, 50(10): 945–949CrossRefGoogle Scholar
  5. 5.
    Wang N, Han X J, Wei B. Specific heat and thermodynamic properties of undercooled liquid cobalt. Appl Phys Lett, 2002, 80(1): 28–30CrossRefADSGoogle Scholar
  6. 6.
    Wang N, Wei B. Thermodynamic properties of highly undercooled liquid TiAl alloy. Appl Phys Lett, 2002, 80(19): 3515–3517CrossRefADSGoogle Scholar
  7. 7.
    Han X J, Wei B. Thermophysical properties of undercooled liquid Co-Mo alloys. Philos Mag, 2003, 83(13): 1511–1532CrossRefGoogle Scholar
  8. 8.
    Schaefers K, Rosner-Kuhn M, Frohberg M G. Enthalpy measurements of undercooled melts by levitation calorimetry: The pure metals nickel, iron, vanadium and niobium. Mater Sci Eng A, 1995, 197(1): 83–90CrossRefGoogle Scholar
  9. 9.
    Perepezko J H, Paik J S. Thermodynamic properties of undercooled liquid metals. J Non-Cryst Solids, 1984, 61–62(1): 113–118CrossRefGoogle Scholar
  10. 10.
    Ohsaka K, Gatewood J R, Trinh E H. An apparatus for the specific heat measurement of undercooled liquids. Scripta Metall Mater, 1991, 25(6): 1459–1461CrossRefADSGoogle Scholar
  11. 11.
    Turnbull D. Formating of crystal nuclei in liquid metal. J Appl Phys, 1950, 21: 1022–1028CrossRefADSGoogle Scholar
  12. 12.
    Thompson C V, Spaepen F. On the approximation of the free energy change on crystallization. Acta Metall, 1979, 27(12): 1855–1859CrossRefGoogle Scholar
  13. 13.
    Battezatti L, Garrone E. On the approximation of the free energy of undercooled glass-forming metallic melts. Z Metallkd, 1984, 75(2): 305–310Google Scholar
  14. 14.
    Dubey K S, Ramanchandrarao P. On the free energy change accompanying crystallization of undercooled melts. Acta Metall, 1984, 32(1): 91–96CrossRefGoogle Scholar
  15. 15.
    Iida T, Guthrie R I L. The Physical Properties of Liquid Metals. Oxford: Clarendon Press, 1993. 241Google Scholar
  16. 16.
    Eötvös R, Wieldeman S. Über den zusammenhang der oberfla chenspannung mit dem molekularvolumen. Ann Physik, 1886, 27(4): 448–459Google Scholar
  17. 17.
    Wang H P, Chang J, Luo B C, et al. Determination of the surface tension of liquid Fe77.5Cu13Mo9.5 ternary monotectic alloy. Chin Phys Lett, 2007, 24(2): 504–507CrossRefADSGoogle Scholar
  18. 18.
    Iida T, Guthrie R I L. The Physical Properties of Liquid Metals. Oxford: Clarendon Press, 1993. 93Google Scholar
  19. 19.
    Lipton J, Kurz W, Trivedi R. Rapid dendrite growth in undercooled alloys. Acta Metall, 1987, 65(4): 957–964Google Scholar
  20. 20.
    Trivedi R, Lipton J, Kurz W. Effect of growth rate dependent partition coefficient on the dendritic growth in undercooled melts. Acta Metall, 1987, 35(4): 965–970CrossRefGoogle Scholar
  21. 21.
    Elmer J W, Aziz M J, Tanner L E, et al. Formation of bands of ultrafine beryllium particles during rapid solidification of Al-Be alloys: Modeling and direct observations. Acta Metall Mater, 1994, 42(4): 1065–1080CrossRefGoogle Scholar

Copyright information

© Science in China Press 2007

Authors and Affiliations

  • Wang HaiPeng 
    • 1
  • Luo BingChi 
    • 1
  • Chang Jian 
    • 1
  • Wei BingBo 
    • 1
    Email author
  1. 1.Department of Applied PhysicsNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations