Skip to main content
Log in

Solid-state non-volatile memories based on vdW heterostructure-based vertical-transport ferroelectric field-effect transistors

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Driven by the explosive development of data-centric computation applications, it is becoming urgent to develop in-memory computing devices that are beyond the von Neumann architecture with an arrangement of separated logic and memory components. The transistor-type solid-state non-volatile memories, such as ferroelectric field-effect transistors (FeFETs), have long been regarded as a competitive candidate for future in-memory computing architectures. However, the density scaling towards high-density arrays would require advanced FeFETs with reduced footprints, which remains a great challenge so far. Here, a vertical-transport (VT) FeFET that flips the charge transport channel perpendicular to the substrate plane is proposed, in which a ferroelectric gate and a van der Waals (vdW) heterojunction channel are vertically integrated, effectively reducing the device footprints. The proposed VT-FeFET shows not only the robust binary non-volatile memory states but also several key synaptic functionalities at the device level. An artificial neural network with supervised learning was simulated based on the device conductance switching properties, showing excellent classification accuracy for the MNIST handwritten digits. These findings suggest that the proposed VT-FeFET could offer a new solution for future non-volatile memories as well as more advanced neuromorphic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Castellanos-Gomez A, Duan X, Fei Z, et al. Van der Waals heterostructures. Nat Rev Methods Primers, 2022, 2: 58

    Article  Google Scholar 

  2. Novoselov K S, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures. Science, 2016, 353: aac9439

    Article  Google Scholar 

  3. Lee J H, Shin D H, Yang H, et al. Semiconductor-less vertical transistor with Ion/Ioff of 106. Nat Commun, 2021, 12: 1000

    Article  Google Scholar 

  4. Luo Z D, Yang M M, Liu Y, et al. Emerging opportunities for 2D semiconductor/ferroelectric transistor-structure devices. Adv Mater, 2021, 33: e2005620

    Article  Google Scholar 

  5. Sangwan V K, Hersam M C. Neuromorphic nanoelectronic materials. Nat Nanotechnol, 2020, 15: 517–528

    Article  Google Scholar 

  6. Ahn J, Ko K, Kyhm J, et al. Near-infrared self-powered linearly polarized photodetection and digital incoherent holography using WSe2/ReSe2 van der Waals heterostructure. ACS Nano, 2021, 15: 17917–17925

    Article  Google Scholar 

  7. Wang Z, Gutiérrez-Lezama I, Ubrig N, et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat Commun, 2018, 9: 2516

    Article  Google Scholar 

  8. Liu L, Kong L, Li Q, et al. Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nat Electron, 2021, 4: 342–347

    Article  Google Scholar 

  9. Ma L, Tao Q, Chen Y, et al. Realizing on/off ratios over 104 for sub-2 nm vertical transistors. Nano Lett, 2023, 23: 8303–8309

    Article  Google Scholar 

  10. Cheng R, Wang F, Yin L, et al. High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nat Electron, 2018, 1: 356–361

    Article  Google Scholar 

  11. Huang M, Li S, Zhang Z, et al. Multifunctional high-performance van der Waals heterostructures. Nat Nanotech, 2017, 12: 1148–1154

    Article  Google Scholar 

  12. Yu W J, Li Z, Zhou H, et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat Mater, 2013, 12: 246–252

    Article  Google Scholar 

  13. Britnell L, Gorbachev R V, Jalil R, et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science, 2012, 335: 947–950

    Article  Google Scholar 

  14. Yang Q, Luo Z D, Duan H, et al. Steep-slope vertical-transport transistors built from sub-5 nm thin van der Waals heterostructures. Nat Commun, 2024, 15: 1138

    Article  Google Scholar 

  15. Yakimets D, Eneman G, Schuddinck P, et al. Vertical GAAFETs for the ultimate CMOS scaling. IEEE Trans Electron Devices, 2015, 62: 1433–1439

    Article  Google Scholar 

  16. Jagannathan H, Anderson B, Sohn C-W, et al. Vertical-transport nanosheet technology for CMOS scaling beyond lateraltransport devices. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), San Francisco, 2021

  17. Ye S, Yamabe K, Endoh T. Ultimate vertical gate-all-around metal-oxide-semiconductor field-effect transistor and its three-dimensional integrated circuits. Mater Sci Semicond Process, 2021, 134: 106046

    Article  Google Scholar 

  18. Georgiou T, Jalil R, Belle B D, et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat Nanotech, 2013, 8: 100–103

    Article  Google Scholar 

  19. Cao W, Bu H, Vinet M, et al. The future transistors. Nature, 2023, 620: 501–515

    Article  Google Scholar 

  20. Lanza M, Sebastian A, Lu W D, et al. Memristive technologies for data storage, computation, encryption, and radio-frequency communication. Science, 2022, 376: 9979

    Article  Google Scholar 

  21. Mehonic A, Kenyon A J. Brain-inspired computing needs a master plan. Nature, 2022, 604: 255–260

    Article  Google Scholar 

  22. Luo Z D, Zhang S, Liu Y, et al. Dual-ferroelectric-coupling-engineered two-dimensional transistors for multifunctional inmemory computing. ACS Nano, 2022, 16: 3362–3372

    Article  Google Scholar 

  23. Khan A I, Keshavarzi A, Datta S. The future of ferroelectric field-effect transistor technology. Nat Electron, 2020, 3: 588–597

    Article  Google Scholar 

  24. Yang T H, Liang B W, Hu H C, et al. Ferroelectric transistors based on shear-transformation-mediated rhombohedral-stacked molybdenum disulfide. Nat Electron, 2024, 7: 29–38

    Article  Google Scholar 

  25. Si M, Saha A K, Gao S, et al. A ferroelectric semiconductor field-effect transistor. Nat Electron, 2019, 2: 580–586

    Article  Google Scholar 

  26. Zhao Z, Rakheja S, Zhu W. Nonvolatile reconfigurable 2D Schottky barrier transistors. Nano Lett, 2021, 21: 9318–9324

    Article  Google Scholar 

  27. Luo Z D, Xia X, Yang M M, et al. Artificial optoelectronic synapses based on ferroelectric field-effect enabled 2D transition metal dichalcogenide memristive transistors. ACS Nano, 2020, 14: 746–754

    Article  Google Scholar 

  28. Zhang J, Gao F, Hu P A. A vertical transistor with a sub-1-nm channel. Nat Electron, 2021, 4: 325

    Article  Google Scholar 

  29. Zhou C, Chai Y. Ferroelectric-gated two-dimensional-material-based electron devices. Adv Elect Mater, 2017, 3: 1600400

    Article  Google Scholar 

  30. Chanthbouala A, Garcia V, Cherifi R O, et al. A ferroelectric memristor. Nat Mater, 2012, 11: 860–864

    Article  Google Scholar 

  31. Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proc IEEE, 1998, 86: 2278–2324

    Article  Google Scholar 

  32. Ning H, Yu Z, Zhang Q, et al. An in-memory computing architecture based on a duplex two-dimensional material structure for in situ machine learning. Nat Nanotechnol, 2023, 18: 493–500

    Article  Google Scholar 

  33. Fuller E J, Gabaly F E, Leonard F, et al. Li-ion synaptic transistor for low power analog computing. Adv Mater, 2017, 29: 1604310

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (Grant No. 2023YFB4402303), National Natural Science Foundation of China (Grant Nos. 62090033, 62025402, 62274128, 92264202, 62293522, 92364204), Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LDT23F04023F04, LDT23F04024F04, LR21F010003), Fundamental Research Funds for the Central Universities (Grant No. QTZX23079), and Key Research and Development Program of Ningbo City (Grant No. 2023Z071). Zheng-Dong LUO would like to thank Dr. C. Zhao with Analytic&Testing Center of NPU for the assistance of device fabrication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng-Dong Luo or Xuetao Gan.

Additional information

Supporting information Supplementary Notes 1–7. The supporting information is available online at info.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary File

11432_2024_4004_MOESM1_ESM.pdf

Solid-state nonvolatile memories based on vdW heterostructure-based vertical-transport ferroelectric field-effect transistors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Luo, ZD., Xiao, F. et al. Solid-state non-volatile memories based on vdW heterostructure-based vertical-transport ferroelectric field-effect transistors. Sci. China Inf. Sci. 67, 160405 (2024). https://doi.org/10.1007/s11432-024-4004-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-024-4004-9

Keywords

Navigation