Skip to main content
Log in

Recent progress in single crystal perovskite X-ray detectors

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Perovskites have attracted extensive attention as radiation detection material due to their long carrier diffusion length and lifetime, high absorption coefficient, and flexible manufacturing process. Compared with polycrystalline structures, single crystal perovskites improve the performance of optoelectronic devices due to their low defect state density, better photoelectric characteristics, and chemical stability. Herein, we review the recent progress of single crystal perovskite X-ray detectors. First, we briefly introduced the basic concepts, detection mechanisms, figure of merits of perovskite X-ray detectors, and the preparation methods of single crystal perovskites. Then, we summarized the significant advancements in single crystal perovskite X-ray detectors in recent times. Finally, we discussed the critical challenges and some practicable solutions for developing high-performance X-ray detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang S, Yang F, Zhu J, et al. Growth of metal halide perovskite materials. Sci China Mater, 2020, 63: 1438–1463

    Article  CAS  Google Scholar 

  2. Liu Y, Yang Z, Liu S F. Recent progress in single-crystalline perovskite research including crystal preparation, property evaluation, and applications. Adv Sci, 2018, 5: 1700471

    Article  Google Scholar 

  3. Onoda-Yamamuro N, Matsuo T, Suga H. Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II)†. J Phys Chem Solids, 1990, 51: 1383–1395

    Article  CAS  ADS  Google Scholar 

  4. Poglitsch A, Weber D. Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J Chem Phys, 1987, 87: 6373–6378

    Article  CAS  ADS  Google Scholar 

  5. Mitzi D B. Templating and structural engineering in organic-inorganic perovskites. J Chem Soc Dalton Trans, 2001, 1: 1–12

    Article  Google Scholar 

  6. Goldschmidt V M. Die Gesetze der Krystallochemie. Naturwissenschaften, 1926, 14: 477–485

    Article  CAS  ADS  Google Scholar 

  7. Kakavelakis G, Gedda M, Panagiotopoulos A, et al. Metal halide perovskites for high-energy radiation detection. Adv Sci, 2020, 7: 2002098

    Article  CAS  Google Scholar 

  8. Mao L, Stoumpos C C, Kanatzidis M G. Two-dimensional hybrid halide perovskites: principles and promises. J Am Chem Soc, 2019, 141: 1171–1190

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Z, Zhang Z, Zheng W, et al. Sensitive and fast direct conversion X-ray detectors based on single-crystalline HgI2 photoconductor and ZnO nanowire vacuum diode. Adv Mater Technol, 2020, 5: 1901108

    Article  CAS  Google Scholar 

  10. Feng Y, Pan L, Wei H, et al. Low defects density CsPbBr3 single crystals grown by an additive assisted method for gamma-ray detection. J Mater Chem C, 2020, 8: 11360–11368

    Article  CAS  Google Scholar 

  11. Geng X, Feng Q, Zhao R, et al. High-quality single crystal perovskite for highly sensitive X-ray detector. IEEE Electron Dev Lett, 2020, 41: 256–259

    Article  CAS  ADS  Google Scholar 

  12. Abbene L, Gerardi G, Turturici A A, et al. X-ray response of CdZnTe detectors grown by the vertical Bridgman technique: energy, temperature and high flux effects. Nucl Instrum Methods Phys Res Sect A, 2016, 835: 1–12

    Article  CAS  ADS  Google Scholar 

  13. Gao X, Sun H, Yang D, et al. Large-area CdZnTe thick film based array X-ray detector. Vacuum, 2021, 183: 109855

    Article  CAS  ADS  Google Scholar 

  14. Wei H, Huang J. Halide lead perovskites for ionizing radiation detection. Nat Commun, 2019, 10: 1066

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  15. Zhang Z, Yang G. Recent advancements in using perovskite single crystals for gamma-ray detection. J Mater Sci-Mater Electron, 2021, 32: 12758–12770

    Article  CAS  Google Scholar 

  16. Song Y, Li L, Hao M, et al. Elimination of interfacial-electrochemical-reaction-induced polarization in perovskite single crystals for ultrasensitive and stable X-ray detector arrays. Adv Mater, 2021, 33: 2103078

    Article  CAS  Google Scholar 

  17. Lusic H, Grinstaff M W. X-ray-computed tomography contrast agents. Chem Rev, 2013, 113: 1641–1666

    Article  CAS  PubMed  Google Scholar 

  18. Saidaminov M I, Adinolfi V, Comin R, et al. Planar-integrated single-crystalline perovskite photodetectors. Nat Commun, 2015, 6: 8724

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Yu X, Tsao H N, Zhang Z, et al. Miscellaneous and perspicacious: hybrid halide perovskite materials based photodetectors and sensors. Adv Opt Mater, 2020, 8: 2001095

    Article  CAS  Google Scholar 

  20. Wang P, Zhao Y, Wang T. Recent progress and prospects of integrated perovskite/organic solar cells. Appl Phys Rev, 2020, 7: 031303

    Article  CAS  Google Scholar 

  21. Cegielski P J, Giesecke A L, Neutzner S, et al. Monolithically integrated perovskite semiconductor lasers on silicon photonic chips by scalable top-down fabrication. Nano Lett, 2018, 18: 6915–6923

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Li Z, Moon J, Gharajeh A, et al. Room-temperature continuous-wave operation of organometal halide perovskite lasers. ACS Nano, 2018, 12: 10968–10976

    Article  CAS  PubMed  Google Scholar 

  23. Das S, Gholipour S, Saliba M. Perovskites for laser and detector applications. Energy Environ Mater, 2019, 2: 146–153

    Article  Google Scholar 

  24. Liu G, Jia S, Wang J, et al. Toward microlasers with artificial structure based on single-crystal ultrathin perovskite films. Nano Lett, 2021, 21: 8650–8656

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Geng X, Zhang P, Ren J, et al. Directly integrated mixed-dimensional van der Waals graphene/perovskite heterojunction for fast photodetection. InfoMat, 2022, 4: e12347

    Article  CAS  Google Scholar 

  26. Birowosuto M D, Cortecchia D, Drozdowski W, et al. X-ray scintillation in lead halide perovskite crystals. Sci Rep, 2016, 6: 37254

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Shrestha S, Fischer R, Matt G J, et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nat Photon, 2017, 11: 436–440

    Article  CAS  ADS  Google Scholar 

  28. Zhang H, Yang Y, Wang X, et al. X-ray detector based on all-inorganic lead-free Cs2AgBiBr6 perovskite single crystal. IEEE Trans Electron Dev, 2019, 66: 2224–2229

    Article  CAS  ADS  Google Scholar 

  29. Basiricó L, Ciavatti A, Fraboni B. Solution-grown organic and perovskite X-ray detectors: a new paradigm for the direct detection of ionizing radiation. Adv Mater Technol, 2021, 6: 2000475

    Article  Google Scholar 

  30. Yakunin S, Dirin D N, Shynkarenko Y, et al. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat Photon, 2016, 10: 585–589

    Article  CAS  ADS  Google Scholar 

  31. He Y, Matei L, Jung H J, et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nat Commun, 2018, 9: 1609

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  32. Zhang Z, Yang G. Recent advancements in using perovskite single crystals for gamma-ray detection. J Mater Sci-Mater Electron, 2021, 32: 12758–12770

    Article  CAS  Google Scholar 

  33. Onoda-Yamamuro N, Matsuo T, Suga H. Dielectric study of CH3NH3PbX3 (X = Cl, Br, I). J Phys Chem Solids, 1992, 53: 935–939

    Article  CAS  ADS  Google Scholar 

  34. Wehrenfennig C, Eperon G E, Johnston M B, et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv Mater, 2014, 26: 1584–1589

    Article  CAS  PubMed  Google Scholar 

  35. Jeon N J, Noh J H, Yang W S, et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517: 476–480

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Dong Q, Fang Y, Shao Y, et al. Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347: 967–970

    Article  CAS  PubMed  ADS  Google Scholar 

  37. de Quilettes D W, Vorpahl S M, Stranks S D, et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science, 2015, 348: 683–686

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem, 2013, 52: 9019–9038

    Article  CAS  PubMed  Google Scholar 

  39. Xing G, Mathews N, Lim S S, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater, 2014, 13: 476–480

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Zhang Y, Liu Y, Li Y, et al. Perovskite CH3NH3Pb(BrxI1−x)3 single crystals with controlled composition for fine-tuned bandgap towards optimized optoelectronic applications. J Mater Chem C, 2016, 4: 9172–9178

    Article  CAS  Google Scholar 

  41. Miyata A, Mitioglu A, Plochocka P, et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nat Phys, 2015, 11: 582–587

    Article  CAS  Google Scholar 

  42. Yin W J, Shi T, Yan Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl Phys Lett, 2014, 104: 063903

    Article  ADS  Google Scholar 

  43. Halls J J M, Walsh C A, Greenham N C, et al. Efficient photodiodes from interpenetrating polymer networks. Nature, 1995, 376: 498–500

    Article  CAS  ADS  Google Scholar 

  44. Yakunin S, Sytnyk M, Kriegner D, et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat Photon, 2015, 9: 444–449

    Article  CAS  ADS  Google Scholar 

  45. Cheng X, Yang S, Cao B, et al. Single crystal perovskite solar cells: development and perspectives. Adv Funct Mater, 2020, 30: 1905021

    Article  CAS  Google Scholar 

  46. Liu F, Wu R, Zeng Y, et al. Halide perovskites and perovskite related materials for particle radiation detection. Nanoscale, 2022, 14: 6743–6760

    Article  CAS  PubMed  Google Scholar 

  47. Su Y, Ma W, Yang Y M. Perovskite semiconductors for direct X-ray detection and imaging. J Semicond, 2020, 41: 051204

    Article  CAS  Google Scholar 

  48. Zhou X, Wang Y, Ge C, et al. Lead-free perovskite single crystals: a brief review. Crystals, 2021, 11: 1329

    Article  CAS  Google Scholar 

  49. Zhou F, Li Z, Lan W, et al. Halide perovskite, a potential scintillator for X-ray detection. Small Methods, 2020, 4: 2000506

    Article  CAS  ADS  Google Scholar 

  50. Peng J, Xu Y, Yao F, et al. Thick-junction perovskite X-ray detectors: processing and optoelectronic considerations. Nanoscale, 2022, 14: 9636–9647

    Article  CAS  PubMed  Google Scholar 

  51. Wang B, Yang X, Chen S, et al. Flexible perovskite scintillators and detectors for X-ray detection. iScience, 2022, 25: 105593

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  52. Xu X, Qian W, Xiao S, et al. Halide perovskites: a dark horse for direct X-ray imaging. EcoMat, 2020, 2: e12064

    Article  CAS  Google Scholar 

  53. Jung G, Ottnad M, Bohnenkamp W, et al. X-ray photoelectron spectroscopy (XPS) of bovine erythrocuprein. FEBS Lett, 1972, 25: 346–348

    Article  CAS  PubMed  Google Scholar 

  54. Li S, Xie X, Xiong J, et al. Review: perovskite X-ray detectors (1997-present). Crystals, 2022, 12: 1563

    Article  CAS  Google Scholar 

  55. Pan L, Shrestha S, Taylor N, et al. Determination of X-ray detection limit and applications in perovskite X-ray detectors. Nat Commun, 2021, 12: 5258

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  56. IUPAC. Nomenclature, symbols, units and their usage in spectrochemical analysis-XI. Detection of radiation (IUPAC Recommendations 1995). Spectrochim Acta Part B: Atomic Spectrosc, 1997, 52: 539–552

    Article  Google Scholar 

  57. Xia M, Yuan J, Niu G, et al. Unveiling the structural descriptor of A3B2X9 perovskite derivatives toward X-ray detectors with low detection limit and high stability. Adv Funct Mater, 2020, 30: 1910648

    Article  CAS  Google Scholar 

  58. Sun K, Tan D, Fang X, et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science, 2022, 375: 307–310

    Article  CAS  PubMed  ADS  Google Scholar 

  59. Zhang J, Li C, Liang Y, et al. Solution-processed selective area homoepitaxial growth of suspended MAPbX3 (X = Cl, Br) perovskite micro-arrays. Adv Funct Mater, 2023, 33: 2208841

    Article  CAS  Google Scholar 

  60. Chen S, Xiao X, Chen B, et al. Crystallization in one-step solution deposition of perovskite films: upward or downward? Sci Adv, 2021, 7: 2412

    Article  ADS  Google Scholar 

  61. Gu Z, Huang Z, Li C, et al. A general printing approach for scalable growth of perovskite single-crystal films. Sci Adv, 2018, 4: 2390

    Article  ADS  Google Scholar 

  62. Günzler A, Bermúdez-Ureña E, Muscarella L A, et al. Shaping perovskites: in situ crystallization mechanism of rapid thermally annealed, prepatterned perovskite films. ACS Appl Mater Interfaces, 2021, 13: 6854–6863

    Article  PubMed  PubMed Central  Google Scholar 

  63. Corzo D, Wang T, Gedda M, et al. A universal cosolvent evaporation strategy enables direct printing of perovskite single crystals for optoelectronic device applications. Adv Mater, 2022, 34: 2109862

    Article  CAS  Google Scholar 

  64. Xiao M, Huang F, Huang W, et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew Chem Int Ed, 2014, 53: 9898–9903

    Article  CAS  Google Scholar 

  65. Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater, 2014, 13: 897–903

    Article  CAS  PubMed  ADS  Google Scholar 

  66. Zhu Z, Deng W, Li W, et al. Antisolvent-induced fastly grown all-inorganic perovskite CsPbCl3 microcrystal films for high-sensitive UV photodetectors. Adv Mater Inter, 2021, 8: 2001812

    Article  CAS  Google Scholar 

  67. Zhang L, Zhang J, Shang Q, et al. Ultrafast antisolvent growth of single-crystalline CsPbCl3 microcavity for low-threshold room temperature blue lasing. ACS Appl Mater Interfaces, 2022, 14: 21356–21362

    Article  CAS  PubMed  Google Scholar 

  68. Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347: 519–522

    Article  CAS  PubMed  ADS  Google Scholar 

  69. Cha J H, Han J H, Yin W, et al. Photoresponse of CsPbBr3 and Cs4PbBr6 perovskite single crystals. J Phys Chem Lett, 2017, 8: 565–570

    Article  CAS  PubMed  ADS  Google Scholar 

  70. Rakita Y, Kedem N, Gupta S, et al. Low-temperature solution-grown CsPbBr3 single crystals and their characterization. Cryst Growth Des, 2016, 16: 5717–5725

    Article  CAS  Google Scholar 

  71. Tavakoli M M, Yadav P, Prochowicz D, et al. Controllable perovskite crystallization via antisolvent technique using chloride additives for highly efficient planar perovskite solar cells. Adv Energy Mater, 2019, 9: 1803587

    Article  Google Scholar 

  72. Zuo C, Ding L. Lead-free perovskite materials (NH4)3Sb2Ix Br9−x. Angew Chem Int Ed, 2017, 56: 6528–6532

    Article  CAS  Google Scholar 

  73. Kim J, Yun J S, Cho Y, et al. Overcoming the challenges of large-area high-efficiency perovskite solar cells. ACS Energy Lett, 2017, 2: 1978–1984

    Article  CAS  Google Scholar 

  74. Peng S Y, Chuang K W, He J H, et al. Direct growth and patterning of single-crystal perovskites via antisolvent inkjet printing. ACS Appl Electron Mater, 2022, 4: 5468–5474

    Article  CAS  Google Scholar 

  75. Kadro J M, Nonomura K, Gachet D, et al. Facile route to freestanding CH3NH3PbI3 crystals using inverse solubility. Sci Rep, 2015, 5: 11654

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  76. Saidaminov M I, Abdelhady A L, Murali B, et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat Commun, 2015, 6: 7586

    Article  PubMed  ADS  Google Scholar 

  77. Liu Y, Yang Z, Cui D, et al. Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization. Adv Mater, 2015, 27: 5176–5183

    Article  CAS  PubMed  Google Scholar 

  78. Wei W, Zhang Y, Xu Q, et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat Photon, 2017, 11: 315–321

    Article  CAS  ADS  Google Scholar 

  79. Wang W, Meng H, Qi H, et al. Electronic-grade high-quality perovskite single crystals by a steady self-supply solution growth for high-performance X-ray detectors. Adv Mater, 2020, 32: 2001540

    Article  CAS  Google Scholar 

  80. Gao L, Tao K, Sun J, et al. Gamma-ray radiation stability of mixed-cation lead mixed-halide perovskite single crystals. Adv Opt Mater, 2022, 10: 2102069

    Article  CAS  Google Scholar 

  81. May A F, Yan J, McGuire M A. A practical guide for crystal growth of van der Waals layered materials. J Appl Phys, 2020, 128: 051101

    Article  CAS  ADS  Google Scholar 

  82. Zhang P, Hua Y, Li X, et al. Filter-free color image sensor based on CsPbBr3−3nX3n (X = Cl, I) single crystals. J Mater Chem C, 2021, 9: 2840–2847

    Article  CAS  Google Scholar 

  83. Zhou F, Li Z, Lan W, et al. Halide perovskite, a potential scintillator for X-ray detection. Small Methods, 2020, 4: 2000506

    Article  CAS  ADS  Google Scholar 

  84. Zhang Z, Dierks H, Lamers N, et al. Single-crystalline perovskite nanowire arrays for stable X-ray scintillators with micrometer spatial resolution. ACS Appl Nano Mater, 2022, 5: 881–889

    Article  CAS  PubMed  Google Scholar 

  85. Pan Z, Wu L, Jiang J, et al. Searching for high-quality halide perovskite single crystals toward X-ray detection. J Phys Chem Lett, 2022, 13: 2851–2861

    Article  CAS  PubMed  Google Scholar 

  86. Wei H, Fang Y, Mulligan P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat Photon, 2016, 10: 333–339

    Article  CAS  ADS  Google Scholar 

  87. Pan W, Wu H, Luo J, et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat Photon, 2017, 11: 726–732

    Article  CAS  ADS  Google Scholar 

  88. Zhuang R, Wang X, Ma W, et al. Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response. Nat Photon, 2019, 13: 602–608

    Article  CAS  ADS  Google Scholar 

  89. Zhang Y, Liu Y, Xu Z, et al. Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection. Nat Commun, 2020, 11: 2304

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  90. Wu J, Wang L, Feng A, et al. Self-powered FA0.55MA0.45PbI3 single-crystal perovskite X-ray detectors with high sensitivity. Adv Funct Mater, 2021, 32: 2109149

    Article  Google Scholar 

  91. Cui F, Zhang P, Zhang L, et al. Liquid-phase epitaxial growth of large-area MAPbBr3−nCln/CsPbBr3 perovskite single-crystal heterojunction for enhancing sensitivity and stability of X-ray detector. Chem Mater, 2022, 34: 9601–9612

    Article  CAS  Google Scholar 

  92. Li X, Zhang P, Hua Y, et al. Ultralow detection limit and robust hard X-ray imaging detector based on inch-sized lead-free perovskite Cs3Bi2Br9 single crystals. ACS Appl Mater Interfaces, 2022, 14: 9340–9351

    Article  CAS  PubMed  Google Scholar 

  93. Pang J, Zhao S, Du X, et al. Vertical matrix perovskite X-ray detector for effective multi-energy discrimination. Light Sci Appl, 2022, 11: 105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Peng W, Miao X, Adinolfi V, et al. Engineering of CH3NH3PbI3 perovskite crystals by alloying large organic cations for enhanced thermal stability and transport properties. Angew Chem Int Ed, 2016, 55: 10686–10690

    Article  CAS  Google Scholar 

  95. Kishimoto T, Suzuki A, Ueoka N, et al. Effects of guanidinium addition to CH3NH3PbI3−xClx perovskite photovoltaic devices. J Ceram Soc Jpn, 2019, 127: 491–497

    Article  CAS  Google Scholar 

  96. Pei Y, Liu Y, Li F, et al. Unveiling property of hydrolysis-derived DMAPbI3 for perovskite devices: composition engineering, defect mitigation, and stability optimization. iScience, 2019, 15: 165–172

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  97. Jiang J, Xiong M, Fan K, et al. Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring. Nat Photon, 2022, 16: 575–581

    Article  CAS  ADS  Google Scholar 

  98. Li Z, Chen Y, Zhang C, et al. Phenyl-terminated coupling interface enabled highly efficient and stable multiwavelength perovskite single crystal/silicon integrated photodetector. ACS Appl Mater Interfaces, 2023, 15: 17377–17385

    Article  CAS  PubMed  Google Scholar 

  99. Li Z, Huang S, Chen Y, et al. Vapor-deposited amino coupling of hybrid perovskite single crystals and silicon wafers toward highly efficient multiwavelength photodetection. ACS Appl Mater Interfaces, 2022, 14: 52476–52485

    Article  CAS  PubMed  Google Scholar 

  100. Zhang X, Zhu T, Ji C, et al. In situ epitaxial growth of centimeter-sized lead-free (BA)2CsAgBiBr7/Cs2AgBiBr6 hetero-crystals for self-driven X-ray detection. J Am Chem Soc, 2021, 143: 20802–20810

    Article  CAS  PubMed  Google Scholar 

  101. Yan J, Gao F, Tian Y, et al. Controllable perovskite single crystal heterojunction for stable self-powered photo-imaging and X-ray detection. Adv Opt Mater, 2022, 10: 2200449

    Article  CAS  Google Scholar 

  102. Chen M, Dong X, Chu D, et al. Interlayer-spacing engineering of lead-free perovskite single crystal for high-performance X-ray imaging. Adv Mater, 2023, 35: 2211977

    Article  CAS  Google Scholar 

  103. Glushkova A, Andričević P, Smajda R, et al. Ultrasensitive 3D aerosol-jet-printed perovskite X-ray photodetector. ACS Nano, 2021, 15: 4077–4084

    Article  CAS  PubMed  Google Scholar 

  104. Liu Y, Zhang Y, Zhu X, et al. Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging. Adv Mater, 2021, 33: 2006010

    Article  CAS  ADS  Google Scholar 

  105. Chen Y, Lei Y, Li Y, et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature, 2020, 577: 209–215

    Article  CAS  PubMed  ADS  Google Scholar 

  106. Li J, Han Z, Gu Y, et al. Perovskite single crystals: synthesis, optoelectronic properties, and application. Adv Funct Mater, 2021, 31: 2008684

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program (Grant Nos. 2022YFB3204100, 2021YFC3002200, 2020YFA0709800), National Natural Science Foundation of China (Grant Nos. U20A20168, 51861145202, 61874065, 62022047, 52072204), and XpectVision Technology Co., Ltd. (Grant No. 20212001996). Xiangshun GENG is grateful for the support of the Shuimu Tsinghua Scholar Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Ling Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Ren, J., Chen, YA. et al. Recent progress in single crystal perovskite X-ray detectors. Sci. China Inf. Sci. 67, 131401 (2024). https://doi.org/10.1007/s11432-023-3856-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-023-3856-4

Keywords

Navigation