Skip to main content
Log in

Experimental demonstration of a photonic spiking neuron based on a DFB laser subject to side-mode optical pulse injection

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

We proposed and experimentally demonstrated a simple and novel photonic spiking neuron based on a distributed feedback (DFB) laser subject to side-mode optical pulse injection (SMOPI). The DFB laser chip is designed and fabricated based on asymmetric equivalent π phase shift (π-EPS) with the reconstruction-equivalent-chirp (REC) technique. Under side-mode continuous-wave (CW) optical injection, excitability pulse was experimentally observed during the dominant mode switching process due to the injection-locked effect. Based on the transition between the excitability regime and the side-mode injection locking effect, the controllable and repeatable neuron-like spiking response can be realized when external stimulus pulses are electro-optically modulated on the CW optical carrier. The experimental results show that the spike threshold, temporal integration, and refractory period, which are important spike processing mechanisms in biological neurons, can all be achieved in the optically-injected DFB laser. The experimental findings are also verified numerically with a rate equation model that considers the SMOPI. To the best of our knowledge, this is the first experimental demonstration of a photonic spiking neuron based on a DFB laser sub ject to SMOPI, which holds promise for realizing large-scale photonic spiking neuron arrays for hardware photonic spiking neural network chips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roy K, Jaiswal A, Panda P. Towards spike-based machine intelligence with neuromorphic computing. Nature, 2019, 575: 607–617

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Schuman C D, Potok T E, Patton R M, et al. A survey of neuromorphic computing and neural networks in hardware. 2017. ArXiv:1705.06963

  3. Marković D, Mizrahi A, Querlioz D, et al. Physics for neuromorphic computing. Nat Rev Phys, 2020, 2: 499–510

    Article  Google Scholar 

  4. Wetzstein G, Ozcan A, Gigan S, et al. Inference in artificial intelligence with deep optics and photonics. Nature, 2020, 588: 39–47

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Shastri B J, Tait A N, de Lima T F, et al. Photonics for artificial intelligence and neuromorphic computing. Nat Photon, 2021, 15: 102–114

    Article  ADS  CAS  Google Scholar 

  6. Xiang S Y, Han Y N, Song Z W, et al. A review: photonics devices, architectures, and algorithms for optical neural computing. J Semicond, 2021, 42: 023105

    Article  Google Scholar 

  7. Guo X H, Xiang J L, Zhang Y J, et al. Integrated neuromorphic photonics: synapses, neurons, and neural networks. Adv Photon Res, 2021, 2: 2000212

    Article  Google Scholar 

  8. Huang C, Sorger V J, Miscuglio M, et al. Prospects and applications of photonic neural networks. Adv Phys-X, 2022, 7: 1981155

    Google Scholar 

  9. Shen Y, Harris N C, Skirlo S, et al. Deep learning with coherent nanophotonic circuits. Nat Photon, 2017, 11: 441–446

    Article  ADS  CAS  Google Scholar 

  10. Feldmann J, Youngblood N, Karpov M, et al. Parallel convolutional processing using an integrated photonic tensor core. Nature, 2021, 589: 52–58

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Xu X Y, Tan M X, Corcoran B, et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 2021, 589: 44–51

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Xu S F, Wang J, Shu H W, et al. Optical coherent dot-product chip for sophisticated deep learning regression. Light Sci Appl, 2021, 10: 221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang H, Gu M, Jiang X D, et al. An optical neural chip for implementing complex-valued neural network. Nat Commun, 2021, 12: 457

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tian Y, Zhao Y, Liu S P, et al. Scalable and compact photonic neural chip with low learning-capability-loss. Nanophotonics, 2022, 11: 329–344

    Article  CAS  Google Scholar 

  15. Zhou H L, Dong J J, Cheng J W, et al. Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci Appl, 2022, 11: 30

    Article  PubMed  PubMed Central  Google Scholar 

  16. Feldmann J, Youngblood N, Wright C D, et al. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 2019, 569: 208–214

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ashtiani F, Geers A J, Aflatouni F. An on-chip photonic deep neural network for image classification. Nature, 2022, 606: 501–506

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Hurtado A, Henning I D, Adams M J. Optical neuron using polarisation switching in a 1550nm-VCSEL. Opt Express, 2010, 18: 25170–25176

    Article  ADS  PubMed  Google Scholar 

  19. Xiang S Y, Wen A J, Pan W. Emulation of spiking response and spiking frequency property in VCSEL-based photonic neuron. IEEE Photon J, 2016, 8: 1–9

    Article  Google Scholar 

  20. Deng T, Robertson J, Hurtado A. Controlled propagation of spiking dynamics in vertical-cavity surface-emitting lasers: towards neuromorphic photonic networks. IEEE J Sel Top Quantum Electron, 2017, 23: 1–8

    Google Scholar 

  21. Zhang Y H, Robertson J, Xiang S Y, et al. All-optical neuromorphic binary convolution with a spiking VCSEL neuron for image gradient magnitudes. Photon Res, 2021, 9: B201

    Article  Google Scholar 

  22. Robertson J, Hejda M, Bueno J, et al. Ultrafast optical integration and pattern classification for neuromorphic photonics based on spiking VCSEL neurons. Sci Rep, 2020, 10: 6098

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Robertson J, Zhang Y H, Hejda M, et al. Image edge detection with a photonic spiking VCSEL-neuron. Opt Express, 2020, 28: 37526–37537

    Article  ADS  PubMed  Google Scholar 

  24. Xiang S Y, Han Y N, Guo X X, et al. Real-time optical spike-timing dependent plasticity in a single VCSEL with dual-polarized pulsed optical injection. Sci China Inf Sci, 2020, 63: 160405

    Article  Google Scholar 

  25. Song Z W, Xiang S Y, Cao X Y, et al. Experimental demonstration of photonic spike-timing-dependent plasticity based on a VCSOA. Sci China Inf Sci, 2022, 65: 182401

    Article  Google Scholar 

  26. Nahmias M A, Shastri B J, Tait A N, et al. A leaky integrate-and-fire laser neuron for ultrafast cognitive computing. IEEE J Sel Top Quantum Electron, 2013, 19: 1–12

    Article  Google Scholar 

  27. Xiang S Y, Zhang Y H, Gong J K, et al. STDP-based unsupervised spike pattern learning in a photonic spiking neural network with VCSELs and VCSOAs. IEEE J Sel Top Quantum Electron, 2019, 25: 1–9

    Article  Google Scholar 

  28. Xiang S Y, Ren Z X, Song Z W, et al. Computing primitive of fully VCSEL-based all-optical spiking neural network for supervised learning and pattern classification. IEEE Trans Neural Netw Learn Syst, 2020, 32: 2494–2505

    Article  Google Scholar 

  29. Selmi F, Braive R, Beaudoin G, et al. Relative refractory period in an excitable semiconductor laser. Phys Rev Lett, 2014, 112: 183902

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Pammi V A, Alfaro-Bittner K, Clerc M G, et al. Photonic computing with single and coupled spiking micropillar lasers. IEEE J Sel Top Quantum Electron, 2020, 26: 1–7

    Article  Google Scholar 

  31. Peng H T, Nahmias M A, de Lima T F, et al. Neuromorphic photonic integrated circuits. IEEE J Sel Top Quantum Electron, 2018, 24: 1–15

    Article  CAS  Google Scholar 

  32. Peng H T, Angelatos G, de Lima T F, et al. Temporal information processing with an integrated laser neuron. IEEE J Sel Top Quantum Electron, 2020, 26: 1–9

    Article  Google Scholar 

  33. Xiang S Y, Shi Y C, Guo X X, et al. Hardware-algorithm collaborative computing with photonic spiking neuron chip based on an integrated Fabry-Perot laser with a saturable absorber. Optica, 2023, 10: 162

    Article  ADS  Google Scholar 

  34. Song Z W, Xiang S Y, Guo X X, et al. Nonlinear neural computation in an integrated FP-SA spiking neuron subject to incoherent dual-wavelength optical pulse injections. Sci China Inf Sci, 2023, 66: 229405

    Article  Google Scholar 

  35. Xiang J L, Zhang Y J, Zhao Y T, et al. All-optical silicon microring spiking neuron. Photon Res, 2022, 10: 939

    Article  CAS  Google Scholar 

  36. Xiang J L, Torchy A, Guo X H, et al. All-optical spiking neuron based on passive microresonator. J Lightwave Technol, 2020, 38: 4019–4029

    Article  ADS  CAS  Google Scholar 

  37. Jha A, Huang C, Peng H T, et al. Photonic spiking neural networks and graphene-on-silicon spiking neurons. J Lightwave Technol, 2022, 40: 2901–2914

    Article  ADS  CAS  Google Scholar 

  38. Chakraborty I, Saha G, Roy K. Photonic in-memory computing primitive for spiking neural networks using phase-change materials. Phys Rev Appl, 2019, 11: 014063

    Article  ADS  CAS  Google Scholar 

  39. Prucnal P R, Shastri B J, Ferreira de Lima T, et al. Recent progress in semiconductor excitable lasers for photonic spike processing. Adv Opt Photon, 2016, 8: 228

    Article  Google Scholar 

  40. Zhao A K, Jiang N, Peng J F, et al. Parallel generation of low-correlation wideband complex chaotic signals using CW laser and external-cavity laser with self-phase-modulated injection. Opto-Electron Adv, 2022, 5: 200026

    Article  Google Scholar 

  41. Ma B W, Zou W W. Demonstration of a distributed feedback laser diode working as a graded-potential-signaling photonic neuron and its application to neuromorphic information processing. Sci China Inf Sci, 2020, 63: 160408

    Article  Google Scholar 

  42. Shi Y C, Li S M, Chen X F, et al. High channel count and high precision channel spacing multi-wavelength laser array for future PICs. Sci Rep, 2014, 4: 7377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shi Y C, Ma Y X, Hong Z M, et al. High-power DFB semiconductor laser array. In: Proceedings of International Conference on Optical Instruments and Technology: Optical Communication and Optical Signal Processing, 2021

  44. Wieczorek S, Lenstra D. Spontaneously excited pulses in an optically driven semiconductor laser. Phys Rev E, 2004, 69: 016218

    Article  ADS  Google Scholar 

  45. Wieczorek S, Krauskopf B, Lenstra D. Multipulse excitability in a semiconductor laser with optical injection. Phys Rev Lett, 2002, 88: 063901

    Article  ADS  PubMed  Google Scholar 

  46. Wieczorek S, Krauskopf B, Simpson T B, et al. The dynamical complexity of optically injected semiconductor lasers. Phys Rep, 2005, 416: 1–128

    Article  ADS  Google Scholar 

  47. Yang Q, Wu Z M, Wu J G, et al. Influence of injection patterns on chaos synchronization performance between a multimode laser diode and a single-mode laser. Opt Commun, 2008, 281: 5025–5030

    Article  ADS  CAS  Google Scholar 

  48. Ryan A T, Agrawal G P, Gray G R, et al. Optical-feedback-induced chaos and its control in multimode semiconductor lasers. IEEE J Quantum Electron, 1994, 30: 668–679

    Article  ADS  CAS  Google Scholar 

  49. Zhang Y T, Jia Z W, Li Q T, et al. Broadband chaos signal generation based on dual-mode DFB laser with optical feedback (in Chinese). Acta Opt Sin, 2021, 41: 2114001

    Google Scholar 

  50. Hao Y, Xiang S Y, Han G Q, et al. Recent progress of integrated circuits and optoelectronic chips. Sci China Inf Sci, 2021, 64: 201401

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (Grant Nos. 2021YFB2801900, 2021YFB2801901, 2021YFB2801902, 2021YFB2801904, 2018YFE0201200), National Natural Science Foundation of China (Grant No. 61974177), National Outstanding Youth Science Fund Project of National Natural Science Foundation of China (Grant No. 62022062), and Fundamental Research Funds for the Central Universities (Grant No. QTZX23041).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuiying Xiang or Yuechun Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, S., Gao, S., Shi, Y. et al. Experimental demonstration of a photonic spiking neuron based on a DFB laser subject to side-mode optical pulse injection. Sci. China Inf. Sci. 67, 132402 (2024). https://doi.org/10.1007/s11432-023-3810-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-023-3810-9

Keywords

Navigation