Skip to main content
Log in

A novel negative quantum capacitance field-effect transistor with molybdenum disulfide integrated gate stack and steep subthreshold swing for ultra-low power applications

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Various steep-slope devices based on novel structures and mechanisms garnered considerable attention for their potential in ultra-low power logic applications. In this work, a novel steep-slope negative quantum capacitance field-effect transistor (NQCFET) with molybdenum disulfide (MoS2)-integrated gate stack was realized by theoretical analysis and experimental evaluation. By combining the MoS2 equivalent capacitance model calibrated with experimental results, the NQCFET device model is further established. The results demonstrated that the optimized MoS2-integrated NQCFET can achieve a subthreshold swing (SS) of sub-60 mV/dec over a current range of 5 decades, with the minimum SS reaching 29 mV/dec, indicating the remarkable potential of MoS2-integrated NQCFETs for ultra-low power applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu Q, Liu X, Wan B. In2O3 nanowire field-effect transistors with sub-60 mV/dec subthreshold swing stemming from negative capacitance and their logic applications. ACS Nano, 2018, 12: 9608–9616

    Article  Google Scholar 

  2. Li X, Yuan P, Li L. Sub-5-nm monolayer GaSe MOSFET with ultralow subthreshold swing and high on-state current: dielectric layer effects. Phys Rev Appl, 2022, 18: 044012

    Article  Google Scholar 

  3. Wang Y, Bai X, Chu J. Record-low subthreshold-swing negative-capacitance 2D field-effect transistors. Adv Mater, 2020, 32: 2005353

    Article  Google Scholar 

  4. Ionescu A M, Riel H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature, 2011, 479: 329–337

    Article  Google Scholar 

  5. Sarkar D, Xie X, Liu W. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature, 2015, 526: 91–95

    Article  Google Scholar 

  6. Liang Z X, Zhao Y, Wang K F. Experimental investigation of a novel junction-modulated hetero-layer tunnel FET with the striped gate for low power applications. Sci China Inf Sci, 2023, 66: 169406

    Article  Google Scholar 

  7. Salahuddin S, Datta S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett, 2008, 8: 405–410

    Article  Google Scholar 

  8. Khan A I, Chatterjee K, Wang B. Negative capacitance in a ferroelectric capacitor. Nat Mater, 2015, 14: 182–186

    Article  Google Scholar 

  9. Yang M X, Huang Q Q, Wang K F. Physical investigation of subthreshold swing degradation behavior in negative capacitance FET. Sci China Inf Sci, 2022, 65: 162404

    Article  Google Scholar 

  10. Zhao Q T, Hartmann J M, Mantl S. An improved Si tunnel field effect transistor with a buried strained Si1−xGex Source. IEEE Electron Device Lett, 2011, 32: 1480–1482

    Article  Google Scholar 

  11. Hraziia S, Vladimirescu A, Amara A. An analysis on the ambipolar current in Si double-gate tunnel FETs. Solid-State Electron, 2012, 70: 67–72

    Article  Google Scholar 

  12. Hoffmann M, Khan A I, Serrao C. Ferroelectric negative capacitance domain dynamics. J Appl Phys, 2018, 123: 184101

    Article  Google Scholar 

  13. Obradovic B, Rakshit T, Hatcher R, et al. Ferroelectric switching delay as cause of negative capacitance and the implications to NCFETs. In: Proceedings of IEEE Symposium on VLSI Technology, Honolulu, 2018. 51–52

  14. Li Y, Liang R, Wang J, et al. Negative capacitance oxide thin-film transistor with sub-60 mV/decade subthreshold swing. IEEE Electron Device Lett, 2019, 40: 826–829

    Article  Google Scholar 

  15. Migita S, Ota H, Toriumi A, et al. Assessment of steep-subthreshold swing behaviors in ferroelectric-gate field-effect transistors caused by positive feedback of polarization reversal. In: Proceedings of IEEE International Electron Devices Meeting, San Francisco, 2018

  16. Zhou J, Han G, Li Q, et al. Ferroelectric HfZrOx Ge and GeSn PMOSFETs with sub-60 mV/decade subthreshold swing, negligible hysteresis, and improved IDS. In: Proceedings of IEEE International Electron Devices Meeting, San Francisco, 2016. 310–313

  17. Zhou J, Peng Y, Han G, et al. Hysteresis reduction in negative capacitance Ge PFETs enabled by modulating ferroelectric properties in HfZrOx. IEEE J Electron Devices Soc, 2018, 6: 41–48

    Article  Google Scholar 

  18. Kobayashi M. A perspective on steep-subthreshold-slope negative-capacitance field-effect transistor. Appl Phys Express, 2018, 11: 110101

    Article  Google Scholar 

  19. Wang H, Yang M, Huang Q, et al. New insights into the physical origin of negative capacitance and hysteresis in NCFETs. In: Proceedings of IEEE International Electron Devices Meeting, San Francisco, 2018

  20. Kopp T, Mannhart J. Calculation of the capacitances of conductors: Perspectives for the optimization of electronic devices. J Appl Phys, 2009, 106: 064504

    Article  Google Scholar 

  21. He J, Hogan T, Mion T R. Spectroscopic evidence for negative electronic compressibility in a quasi-three-dimensional spin-orbit correlated metal. Nat Mater, 2015, 14: 577–582

    Article  Google Scholar 

  22. Yang Y, Zhang K, Gu Y, et al. Steep-slope negative quantum capacitance field-effect transistor. In: Proceedings of IEEE International Electron Devices Meeting, San Francisco, 2022

  23. Kumar V P, Panda D K. Review—next generation 2D material molybdenum disulfide (MoS2): properties, applications and challenges. ECS J Solid State Sci Technol, 2022, 11: 033012

    Article  Google Scholar 

  24. Yang L, Majumdar K, Liu H. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett, 2014, 14: 6275–6280

    Article  Google Scholar 

  25. Wang S T. On the I–V characteristics of floating-gate MOS transistors. IEEE Trans Electron Devices, 1979, 26: 1292–1294

    Article  Google Scholar 

  26. Graham D W, Farquhar E, Degnan B, et al. Indirect programming of floating-gate transistors. IEEE Trans Circuits Syst I, 2007, 54: 951–963

    Article  Google Scholar 

  27. Eisenstein J P, Pfeiffer L N, West K W. Negative compressibility of interacting two-dimensional electron and quasiparticle gases. Phys Rev Lett, 1992, 68: 674–677

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (Grant No. 2018YFB2202801), National Natural Science Foundation of China (Grant No. 61927901), Beijing SAMT Project (Grant No. SAMT-BD-KT-22030101), 111 Project (Grant No. B18001), and Tencent Foundation through the Xplore Prize.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qianqian Huang or Ru Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Wang, H., Huang, Q. et al. A novel negative quantum capacitance field-effect transistor with molybdenum disulfide integrated gate stack and steep subthreshold swing for ultra-low power applications. Sci. China Inf. Sci. 66, 160406 (2023). https://doi.org/10.1007/s11432-023-3763-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-023-3763-3

Keywords

Navigation