Skip to main content
Log in

Multidimensional modulation of light fields via a combination of two-dimensional materials and meta-structures

  • Review
  • Special Topic: Two-Dimensional Materials and Device Applications
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In recent years, researchers have increasingly directed their attention towards modulating light fields through the unique properties of two-dimensional materials and the free designability of meta-structures. Graphene, transition metal sulfides, transition metal nitrides, and other two-dimensional materials have emerged as star materials in recent years due to their extraordinary properties that are vastly different from those of traditional three-dimensional materials. As a result, these materials hold immense potential for further exploration and research. Taking advantage of the free designability of meta-structures can be an effective means of unlocking the full potential of 2D materials. Accordingly, this review presents an overview of recent research progress in the area of light field modulation achieved by combining 2D materials with meta-structures. The review initially covers the properties of 2D materials, followed by the concepts, principles, design, and preparation of meta-structures. Then the review delves into the concrete examples of the impact and effect of the combination on light field modulation. Lastly, the review concludes with a comprehensive summary and analysis of the current challenges and potential future developments of combining 2D materials with meta-structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu X, Wang C, Shou W, et al. Physical realization of elastic cloaking with a polar material. Phys Rev Lett, 2020, 124: 114301

    Article  Google Scholar 

  2. Zhang L P, Zhang H C, Tang M, et al. Integrated multi-scheme digital modulations of spoof surface plasmon polaritons. Sci China Inf Sci, 2020, 63: 202302

    Article  MathSciNet  Google Scholar 

  3. Li J, Li J, Yue Z, et al. Structured vector field manipulation of terahertz wave along the propagation direction based on dielectric metasurfaces. Laser Photon Rev, 2022, 16: 2200325

    Article  Google Scholar 

  4. Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater, 2014, 13: 139–150

    Article  Google Scholar 

  5. Zhang Y, Zhang F, Du B, et al. Au/MXene based ultrafast all-optical switching. Front Phys, 2023, 18: 33301

    Article  Google Scholar 

  6. Gurses V. Enhancing spatiotemporal light modulators. Nat Photon, 2022, 16: 818–820

    Article  Google Scholar 

  7. Pan H Y, Chen X, Xia X L. A review on the evolvement of optical-frequency filtering in photonic devices in 2016–2021. Renew Sustain Energy Rev, 2022, 161: 112361

    Article  Google Scholar 

  8. Wachter S, Polyushkin D K, Bethge O, et al. A microprocessor based on a two-dimensional semiconductor. Nat Commun, 2017, 8: 14948

    Article  Google Scholar 

  9. Winzer P J. Scaling optical fiber networks: challenges and solutions. Opt Photon News, 2015, 26: 28

    Article  Google Scholar 

  10. Long T, Liang Z N, Liu Q H. Advanced technology of high-resolution radar: target detection, tracking, imaging, and recognition. Sci China Inf Sci, 2019, 62: 40301

    Article  Google Scholar 

  11. Zheng D, Wen Y, Xu X, et al. Metamaterial grating for colorimetric chemical sensing applications. Mater Today Phys, 2023, 33: 101056

    Article  Google Scholar 

  12. Balci O, Kakenov N, Karademir E, et al. Electrically switchable metadevices via graphene. Sci Adv, 2018, 4

  13. Chen Y, Wang X, Wang P, et al. Optoelectronic properties of few-layer MoS2 FET gated by ferroelectric relaxor polymer. ACS Appl Mater Interfaces, 2016, 8: 32083–32088

    Article  Google Scholar 

  14. Long G, Maryenko D, Shen J, et al. Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Lett, 2016, 16: 7768–7773

    Article  Google Scholar 

  15. Zhou J, Sun Q, Wang Q, et al. High-temperature superconductivity in heavily N- or B-doped graphene. Phys Rev B, 2015, 92: 064505

    Article  Google Scholar 

  16. Tarnopolsky G, Kruchkov A J, Vishwanath A. Origin of magic angles in twisted bilayer graphene. Phys Rev Lett, 2019, 122: 106405

    Article  Google Scholar 

  17. Jana M K, Song R, Liu H, et al. Organic-to-inorganic structural chirality transfer in a 2D hybrid perovskite and impact on Rashba-Dresselhaus spin-orbit coupling. Nat Commun, 2020, 11: 4699

    Article  Google Scholar 

  18. Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index. Science, 2004, 305: 788–792

    Article  Google Scholar 

  19. Jin Y, Wang W, Khelif A, et al. Elastic metasurfaces for deep and robust subwavelength focusing and imaging. Phys Rev Appl, 2021, 15: 024005

    Article  Google Scholar 

  20. Zhong Y L, Tian Z, Simon G P, et al. Scalable production of graphene via wet chemistry: progress and challenges. Mater Today, 2015, 18: 73–78

    Article  Google Scholar 

  21. Jiang H B, Zhang Y L, Liu Y, et al. Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil. Laser Photon Rev, 2016, 10: 441–450

    Article  Google Scholar 

  22. Chang C, Chen W, Chen Y, et al. Recent progress on two-dimensional materials. Acta Phys Chim Sin, 2021, 0: 2108017

    Article  Google Scholar 

  23. Ganz E, Sattler K, Clarke J. Scanning tunneling microscopy of the local atomic structure of two-dimensional gold and silver islands on graphite. Phys Rev Lett, 1988, 60: 1856–1859

    Article  Google Scholar 

  24. Chen Y, Fan Z, Zhang Z, et al. Two-dimensional metal nanomaterials: synthesis, properties, and applications. Chem Rev, 2018, 118: 6409–6455

    Article  Google Scholar 

  25. Coleman J N, Lotya M, O’Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331: 568–571

    Article  Google Scholar 

  26. Cai Z, Liu B, Zou X, et al. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem Rev, 2018, 118: 6091–6133

    Article  Google Scholar 

  27. Zhang H. Introduction: 2D materials chemistry. Chem Rev, 2018, 118: 6089–6090

    Article  Google Scholar 

  28. Varghese N, Mogera U, Govindaraj A, et al. Binding of DNA nucleobases and nucleosides with graphene. ChemPhysChem, 2009, 10: 206–210

    Article  Google Scholar 

  29. Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669

    Article  Google Scholar 

  30. Liu F, Navaraj W T, Yogeswaran N, et al. van der Waals contact engineering of graphene field-effect transistors for large-area flexible electronics. ACS Nano, 2019, 13: 3257–3268

    Article  Google Scholar 

  31. Papageorgiou D G, Kinloch I A, Young R J. Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci, 2017, 90: 75–127

    Article  Google Scholar 

  32. Yildiz G, Bolton-Warberg M, Awaja F. Graphene and graphene oxide for bio-sensing: general properties and the effects of graphene ripples. Acta Biomater, 2021, 131: 62–79

    Article  Google Scholar 

  33. Olabi A G, Abdelkareem M A, Wilberforce T, et al. Application of graphene in energy storage device — a review. Renew Sustain Energy Rev, 2021, 135: 110026

    Article  Google Scholar 

  34. Du J, Fu G, Xu X, et al. 3D printed graphene-based metamaterials: guesting multi-functionality in one gain. Small, 2023. doi: https://doi.org/10.1002/smll.202207833

  35. Perruisseau-Carrier J. Graphene for antenna applications: opportunities and challenges from microwaves to THz. In: Proceedings of Antennas and Propagation Conference, 2013

  36. Fan Y, Shen N, Zhang F, et al. Two-dimensional optics: graphene plasmonics: a platform for 2D optics (Advanced Optical Materials 3/2019). Adv Opt Mater, 2019, 7: 1970009

    Article  Google Scholar 

  37. Fei Z, Rodin A S, Andreev G O, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 2012, 487: 82–85

    Article  Google Scholar 

  38. Cyrus S, Biabanifard S. Graphene-based THz absorber: adjustability via multiple gate biasing. Heliyon, 2021, 7: e07633

    Article  Google Scholar 

  39. Brar V W, Jang M S, Sherrott M, et al. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Lett, 2013, 13: 2541–2547

    Article  Google Scholar 

  40. Yan H, Li X, Chandra B, et al. Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotech, 2012, 7: 330–334

    Article  Google Scholar 

  41. Ju L, Geng B, Horng J, et al. Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotech, 2011, 6: 630–634

    Article  Google Scholar 

  42. Zhao B, Shen D, Zhang Z, et al. 2D metallic transition-metal dichalcogenides: structures, synthesis, properties, and applications. Adv Funct Mater, 2021, 31: 2105132

    Article  Google Scholar 

  43. Mupparapu R, Bucher T, Staude I. Integration of two-dimensional transition metal dichalcogenides with Mie-resonant dielectric nanostructures. Adv Phys-X, 2020, 5: 1734083

    Google Scholar 

  44. Deng M, Wang X, Chen J, et al. Plasmonic modulation of valleytronic emission in two-dimensional transition metal dichalcogenides. Adv Funct Mater, 2021, 31: 2010234

    Article  Google Scholar 

  45. Tang Q, Zhou Z, Shen P. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J Am Chem Soc, 2012, 134: 16909–16916

    Article  Google Scholar 

  46. Hope M A, Forse A C, Griffith K J, et al. NMR reveals the surface functionalisation of Ti3C2 MXene. Phys Chem Chem Phys, 2016, 18: 5099–5102

    Article  Google Scholar 

  47. Wang H, Wu Y, Zhang J, et al. Enhancement of the electrical properties of MXene Ti3C2 nanosheets by post-treatments of alkalization and calcination. Mater Lett, 2015, 160: 537–540

    Article  Google Scholar 

  48. Cao M, Shu J, Wang X, et al. Electronic structure and electromagnetic properties for 2D electromagnetic functional materials in gigahertz frequency. Annalen Der Physik, 2019, 531: 1800390

    Article  Google Scholar 

  49. Yang S, Zhang K, Ricciardulli A G, et al. A delamination strategy for thinly layered defect-free high-mobility black phosphorus flakes. Angew Chem, 2018, 130: 4767–4771

    Article  Google Scholar 

  50. Correas-Serrano D, Gomez-Diaz J S, Alú A. Mid-infrared plasmon canalization over black phosphorus metasurfaces. In: Proceedings of IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, 2017. 1069–1070

  51. Ong W J, Tan L L, Ng Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev, 2016, 116: 7159–7329

    Article  Google Scholar 

  52. Tan C, Cao X, Wu X J, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev, 2017, 117: 6225–6331

    Article  Google Scholar 

  53. Jahani S, Jacob Z. All-dielectric metamaterials. Nat Nanotech, 2016, 11: 23–36

    Article  Google Scholar 

  54. Estep N A, Askarpour A N, Alu A. Experimental demonstration of negative-index propagation in a rectangular waveguide loaded with complementary split-ring resonators. Antennas Wirel Propag Lett, 2015, 14: 119–122

    Article  Google Scholar 

  55. Guo C, Luo Y. Light people: prof. Sir John Pendry, father of metamaterials, spoke about the future of meta. Light Sci Appl, 2023, 12: 45

    Article  Google Scholar 

  56. Zhang D, Zheng H, Ma X, et al. On-demand circularly polarized room-temperature phosphorescence in chiral nematic nanoporous silica films. Adv Opt Mater, 2022, 10: 2102015

    Article  Google Scholar 

  57. Liu J W, Shi F L, He X T, et al. Valley photonic crystals. Adv Phys-X, 2021, 6: 1905546

    Google Scholar 

  58. Zhang T, Zheng C Q, Chen Z N, et al. Negative reflection and negative refraction in biaxial van der Waals materials. Nano Lett, 2022, 22: 5607–5614

    Article  Google Scholar 

  59. Silveirinha M, Engheta N. Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media. Phys Rev B, 2007, 75: 075119

    Article  Google Scholar 

  60. Valentine J, Zhang S, Zentgraf T, et al. Three-dimensional optical metamaterial with a negative refractive index. Nature, 2008, 455: 376–379

    Article  Google Scholar 

  61. Zeng Q, Duan S, Zhao Z, et al. Inverse design of energy-absorbing metamaterials by topology optimization. Adv Sci, 2023, 10: 2204977

    Article  Google Scholar 

  62. Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292: 77–79

    Article  Google Scholar 

  63. Liu Y C, Wang G P, Zhang S. A nonlocal effective medium description of topological Weyl metamaterials. Laser Photon Rev, 2021, 15: 2100129

    Article  Google Scholar 

  64. Hibbins A P, Evans B R, Sambles J R. Experimental verification of designer surface plasmons. Science, 2005, 308: 670–672

    Article  Google Scholar 

  65. Rawashdeh A, Wildenborg A, Liu E, et al. High-quality surface plasmon polaritons in large-area sodium nanostructures. Nano Lett, 2023, 23: 469–475

    Article  Google Scholar 

  66. Maier S A, Andrews S R, Martín-Moreno L, et al. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys Rev Lett, 2006, 97: 176805

    Article  Google Scholar 

  67. Shen X, Jun Cui T. Planar plasmonic metamaterial on a thin film with nearly zero thickness. Appl Phys Lett, 2013, 102: 211909

    Article  Google Scholar 

  68. Zhang H C, Liu S, Shen X, et al. Broadband amplification of spoof surface plasmon polaritons at microwave frequencies. Laser Photon Rev, 2015, 9: 83–90

    Article  Google Scholar 

  69. Elbanna A, Jiang H, Fu Q, et al. 2D material infrared photonics and plasmonics. ACS Nano, 2023, 17: 4134–4179

    Article  Google Scholar 

  70. Raman A, Shin W, Fan S. Upper bound on the modal material loss rate in plasmonic and metamaterial systems. Phys Rev Lett, 2013, 110: 183901

    Article  Google Scholar 

  71. Drachev V P, Chettiar U K, Kildishev A V, et al. The Ag dielectric function in plasmonic metamaterials. Opt Express, 2008, 16: 1186–1195

    Article  Google Scholar 

  72. Yan J, Yang X, Liu X, et al. Van der Waals heterostructures with built-in Mie resonances for polarization-sensitive photodetection. Adv Sci, 2023, 10: 2207022

    Article  Google Scholar 

  73. Adachi M, Sugimoto H, Nishimura Y, et al. Fluorophore-decorated Mie resonant silicon nanosphere for scattering/fluorescence dual-mode imaging. Small, 2023, 19: 2207318

    Article  Google Scholar 

  74. Zhao S, Wei G W. High-order FDTD methods via derivative matching for Maxwell’s equations with material interfaces. J Comput Phys, 2004, 200: 60–103

    Article  MathSciNet  MATH  Google Scholar 

  75. Oskooi A F, Roundy D, Ibanescu M, et al. Meep: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput Phys Commun, 2010, 181: 687–702

    Article  MATH  Google Scholar 

  76. Putrino G, Keating A, Martyniuk M, et al. Model and analysis of a high sensitivity resonant optical read-out approach suitable for cantilever sensor arrays. J Lightwave Technol, 2012, 30: 1863–1868

    Article  Google Scholar 

  77. Wang J, Wu Z, Xing Y, et al. Multi-scale design of ultra-broadband microwave metamaterial absorber based on hollow carbon/MXene/Mo2C microtube. Small, 2023, 19

  78. Zhou W P, Bai S, Xie Z W, et al. Research progress of laser direct writing fabrication of metal and carbon micro/nano structures and devices. Opto-Electron Eng, 2022, 49: 210330

    Google Scholar 

  79. Kim J, Kim W, Oh D K, et al. One-step printable platform for high-efficiency metasurfaces down to the deep-ultraviolet region. Light Sci Appl, 2023, 12: 68

    Article  Google Scholar 

  80. Wang D, Xu T, Zhang M, et al. A novel layered WO3 derived from an ion etching engineering for ultrafast proton storage in frozen electrolyte. Adv Funct Mater, 2023, 33: 2211491

    Article  Google Scholar 

  81. Sundaramurthy A, Schuck P J, Conley N R, et al. Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. Nano Lett, 2006, 6: 355–360

    Article  Google Scholar 

  82. Mousavi S H, Kholmanov I, Alici K B, et al. Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared. Nano Lett, 2013, 13: 1111–1117

    Article  Google Scholar 

  83. Liu Y, Qu Y, Liu Y, et al. Direct-writing of 2D diodes by focused ion beams. Adv Funct Mater, 2021, 31: 2102708

    Article  Google Scholar 

  84. Bruchhaus L, Mazarov P, Bischoff L, et al. Comparison of technologies for nano device prototyping with a special focus on ion beams: a review. Appl Phys Rev, 2017, 4: 011302

    Article  Google Scholar 

  85. Zhang J, Zhu W. Dynamic polarization manipulation in graphene-based metasurface. In: Proceedings of IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2021. 290–292

  86. Fan C, Wu B, Hu Y, et al. Millimeter-wave pattern reconfigurable vivaldi antenna using tunable resistor based on graphene. IEEE Trans Antennas Propagat, 2019, 68: 4939–4943

    Article  Google Scholar 

  87. Zhang J, Wei X, Rukhlenko I D, et al. Electrically tunable metasurface with independent frequency and amplitude modulations. ACS Photon, 2019, 7: 265–271

    Article  Google Scholar 

  88. Yu Y, Zhong F, Chu Q, et al. Polarization-sensitive narrowband infrared photodetection triggered by optical Tamm state engineering. Opt Express, 2023, 31: 8797–8804

    Article  Google Scholar 

  89. Huang C H, Wu C H, Bikbaev R G, et al. Wavelength- and angle-selective photodetectors enabled by graphene hot electrons with Tamm plasmon polaritons. Nanomaterials, 2023, 13: 693

    Article  Google Scholar 

  90. Li Z, Liu C, Rong X, et al. Tailoring MoS2 valley-polarized photoluminescence with super chiral near-field. Adv Mater, 2018, 30: 1801908

    Article  Google Scholar 

  91. Zhou Y, Li L, He Z, et al. Field enhancement for the composite MXene/black phosphorus-based metasurface. Nanomaterials, 2022, 12: 3155

    Article  Google Scholar 

  92. Li Y, Ma H, Wang Y, et al. Electrically driven active VO2/MXene metasurface for the terahertz modulation. Appl Phys Lett, 2022, 121: 241902

    Article  Google Scholar 

  93. Wang Z, Cheng F, Winsor T, et al. Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications. Nanotechnology, 2016, 27: 412001

    Article  Google Scholar 

  94. Hong Q, Xu W, Zhang J, et al. Optical activity in monolayer black phosphorus due to extrinsic chirality. Opt Lett, 2019, 44: 1774–1777

    Article  Google Scholar 

  95. Zeng Y, Xu J, Xiao W, et al. Giant 2D-chiroptical response in an achiral metasurface integrated with black phosphorus. Opt Express, 2022, 30: 8266–8274

    Article  Google Scholar 

  96. Lai J, Ma J, Fan Z, et al. Direct light orbital angular momentum detection in mid-infrared based on the type-II Weyl semimetal TaIrTe4. Adv Mater, 2022, 34: 2201229

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (Grant Nos. 2019YFA0210203, 2020YFA0211300), National Natural Science Foundation of China (Grant Nos. 62225501, 12027807), and High-performance Computing Platform of Peking University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheyu Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Huang, Y., Wu, F. et al. Multidimensional modulation of light fields via a combination of two-dimensional materials and meta-structures. Sci. China Inf. Sci. 66, 160403 (2023). https://doi.org/10.1007/s11432-023-3753-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-023-3753-9

Keywords

Navigation