Skip to main content
Log in

Recent progress of layered memristors based on two-dimensional MoS2

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Memristors are memory-capable electronic components that consist of two terminals and a switching layer, whose resistance can be adjusted by an applied bias voltage. Two-dimensional (2D) materials with ultrathin layered structures are used as switching layers to overcome the limitations of traditional resistive materials in reducing the memristor sizes, demonstrating their potential in memory, flexible electronics, neuromorphic computing, and other related fields. Particularly, MoS2 is widely used as a representative 2D semiconductor, and the MoS2-based memristors have been intensively studied. In this review article, we have summarized the recent progress of MoS2-based memristors, including the fabrication process, device structure, device performance, switching mechanism, and synaptic applications. In addition, we also discussed the prospects and challenges for their future development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strukov D B, Snider G S, Stewart D R, et al. The missing memristor found. Nature, 2008, 453: 80–83

    Article  Google Scholar 

  2. Xia Q, Yang J J. Memristive crossbar arrays for brain-inspired computing. Nat Mater, 2019, 18: 309–323

    Article  Google Scholar 

  3. Lee M J, Lee C B, Lee D, et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/Ta2O2−x bilayer structures. Nat Mater, 2011, 10: 625–630

    Article  Google Scholar 

  4. Yao P, Wu H, Gao B, et al. Fully hardware-implemented memristor convolutional neural network. Nature, 2020, 577: 641–646

    Article  Google Scholar 

  5. Yang J J, Strukov D B, Stewart D R. Memristive devices for computing. Nat Nanotech, 2013, 8: 13–24

    Article  Google Scholar 

  6. Prezioso M, Merrikh-Bayat F, Hoskins B D, et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature, 2015, 521: 61–64

    Article  Google Scholar 

  7. Zidan M A, Strachan J P, Lu W D. The future of electronics based on memristive systems. Nat Electron, 2018, 1: 22–29

    Article  Google Scholar 

  8. Ielmini D, Wong H S P. In-memory computing with resistive switching devices. Nat Electron, 2018, 1: 333–343

    Article  Google Scholar 

  9. Lastras-Montaño M A, Cheng K T. Resistive random-access memory based on ratioed memristors. Nat Electron, 2018, 1: 466–472

    Article  Google Scholar 

  10. Kumar S, Strachan J P, Williams R S. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature, 2017, 548: 318–321

    Article  Google Scholar 

  11. Rehn D A, Reed E J. Memristors with distorted structures. Nat Mater, 2019, 18: 8–9

    Article  Google Scholar 

  12. Wang Z, Joshi S, Savel’ev S E, et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat Mater, 2017, 16: 101–108

    Article  Google Scholar 

  13. Sun K, Chen J, Yan X. The future of memristors: materials engineering and neural networks. Adv Funct Mater, 2017, 31: 2006773

    Article  Google Scholar 

  14. Huh W, Lee D, Lee C H. Memristors based on 2D materials as an artificial synapse for neuromorphic electronics. Adv Mater, 2020, 32: 2002092

    Article  Google Scholar 

  15. Shi T, Wang R, Wu Z, et al. A review of resistive switching devices: performance improvement, characterization, and applications. Small Struct, 2021, 2: 2000109

    Article  Google Scholar 

  16. Ge R, Wu X, Kim M, et al. Atomristor: nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett, 2018, 18: 434–441

    Article  Google Scholar 

  17. Kim M, Ge R, Wu X, et al. Zero-static power radio-frequency switches based on MoS2 atomristors. Nat Commun, 2018, 9: 2524

    Article  Google Scholar 

  18. Lu X F, Zhang Y, Wang N, et al. Exploring low power and ultrafast memristor on p-type van der Waals SnS. Nano Lett, 2021, 21: 8800–8807

    Article  Google Scholar 

  19. Li S, Pam M E, Li Y, et al. Wafer-scale 2D hafnium diselenide based memristor crossbar array for energy-efficient neural network hardware. Adv Mater, 2022, 34: 2103376

    Article  Google Scholar 

  20. Ranganathan K, Fiegenbaum-Raz M, Ismach A. Large-scale and robust multifunctional vertically aligned MoS2 photo-memristors. Adv Funct Mater, 2020, 30: 2005718

    Article  Google Scholar 

  21. Feng X, Li Y, Wang L, et al. A fully printed flexible MoS2 memristive artificial synapse with femtojoule switching energy. Adv Electron Mater, 2019, 5: 1900740

    Article  Google Scholar 

  22. Yan X, Zhao Q, Chen A P, et al. Vacancy-induced synaptic behavior in 2D WS2 nanosheet-based memristor for low-power neuromorphic computing. Small, 2019, 15: 1901423

    Article  Google Scholar 

  23. Sangwan V K, Jariwala D, Kim I S, et al. Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat Nanotech, 2015, 10: 403–406

    Article  Google Scholar 

  24. Shi Y, Liang X, Yuan B, et al. Electronic synapses made of layered two-dimensional materials. Nat Electron, 2018, 1: 458–465

    Article  Google Scholar 

  25. Lei P, Duan H, Qin L, et al. High-performance memristor based on 2D layered BiOI nanosheet for low-power artificial optoelectronic synapses. Adv Funct Mater, 2022, 32: 2201276

    Article  Google Scholar 

  26. Splendiani A, Sun L, Zhang Y, et al. Emerging photoluminescence in monolayer MoS2. Nano Lett, 2010, 10: 1271–1275

    Article  Google Scholar 

  27. Xu R, Jang H, Lee M H, et al. Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV. Nano Lett, 2019, 19: 2411–2417

    Article  Google Scholar 

  28. Abnavi A, Ahmadi R, Hasani A, et al. Free-standing multilayer molybdenum disulfide memristor for brain-inspired neuro-morphic applications. ACS Appl Mater Interfaces, 2021, 13: 45843–45853

    Article  Google Scholar 

  29. Wang M, Cai S, Pan C, et al. Robust memristors based on layered two-dimensional materials. Nat Electron, 2018, 1: 130–136

    Article  Google Scholar 

  30. Zhu X, Li D, Liang X, et al. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat Mater, 2019, 18: 141–148

    Article  Google Scholar 

  31. Cheng P, Sun K, Hu Y H. Memristive behavior and ideal memristor of 1T Phase MoS2 nanosheets. Nano Lett, 2016, 16: 572–576

    Article  Google Scholar 

  32. Tang B, Veluri H, Li Y, et al. Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing. Nat Commun, 2022, 13: 3037

    Article  Google Scholar 

  33. Desai S B, Madhvapathy S R, Sachid A B, et al. MoS2 transistors with 1-nanometer gate lengths. Science, 2016, 354: 99–102

    Article  Google Scholar 

  34. Yang Y, Gao P, Li L, et al. Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. Nat Commun, 2014, 5: 4232

    Article  Google Scholar 

  35. Naqi M, Kang M S, Liu N, et al. Multilevel artificial electronic synaptic device of direct grown robust MoS2 based memristor array for in-memory deep neural network. npj 2D Mater Appl, 2022, 6: 53

    Article  Google Scholar 

  36. Zhao X, Fan Z, Xu H, et al. Reversible alternation between bipolar and unipolar resistive switching in Ag/MoS2/Au structure for multilevel flexible memory. J Mater Chem C, 2018, 6: 7195–7200

    Article  Google Scholar 

  37. Geim A K. Graphene: status and prospects. Science, 2009, 324: 1530–1534

    Article  Google Scholar 

  38. Liu S, Lu N, Zhao X, et al. Eliminating negative-SET behavior by suppressing nanofilament overgrowth in cation-based memory. Adv Mater, 2016, 28: 10623–10629

    Article  Google Scholar 

  39. Liu L, Kong L, Li Q, et al. Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nat Electron, 2021, 4: 342–347

    Article  Google Scholar 

  40. Liu Y, Guo J, Zhu E, et al. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature, 2018, 557: 696–700

    Article  Google Scholar 

  41. Li Q, Tao Q, Chen Y, et al. Low voltage and robust InSe memristor using van der Waals electrodes integration. Int J Extrem Manuf, 2021, 3: 045103

    Article  Google Scholar 

  42. Mao J, Wu S, Ding G, et al. A van der Waals integrated damage-free memristor based on layered 2D hexagonal boron nitride. Small, 2022, 18: 2106253

    Article  Google Scholar 

  43. Guo J, Wang L, Liu Y, et al. Highly reliable low-voltage memristive switching and artificial synapse enabled by van der Waals integration. Matter, 2020, 2: 965–976

    Article  Google Scholar 

  44. Chiu F C. A review on conduction mechanisms in dielectric films. Adv Mater Sci Eng, 2014, 2014: 1–18

    Google Scholar 

  45. Miremadi B K, Cowan T, Morrison S R. New structures from exfoliated MoS2. J Appl Phys, 1991, 69: 6373–6379

    Article  Google Scholar 

  46. Acerce M, Voiry D, Chhowalla M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat Nanotech, 2015, 10: 313–318

    Article  Google Scholar 

  47. Zhang P, Gao C, Xu B, et al. Structural phase transition effect on resistive switching behavior of MoS2-polyvinylpyrrolidone nanocomposites films for flexible memory devices. Small, 2016, 12: 2077–2084

    Article  Google Scholar 

  48. Wang L, Xu Z, Wang W, et al. Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. J Am Chem Soc, 2014, 136: 6693–6697

    Article  Google Scholar 

  49. Sangwan V K, Lee H S, Bergeron H, et al. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature, 2018, 554: 500–504

    Article  Google Scholar 

  50. Vu Q A, Kim H, Nguyen V L, et al. A high-on/off-ratio floating-gate memristor array on a flexible substrate via CVD-grown large-area 2D layer stacking. Adv Mater, 2017, 29: 1703363

    Article  Google Scholar 

  51. Zhai Y, Yang X, Wang F, et al. Infrared-sensitive memory based on direct-grown MoS2-upconversion-nanoparticle heterostructure. Adv Mater, 2018, 30: 1803563

    Article  Google Scholar 

  52. Lee J, Pak S, Lee Y W, et al. Monolayer optical memory cells based on artificial trap-mediated charge storage and release. Nat Commun, 2017, 8: 14734

    Article  Google Scholar 

  53. Wang X F, Tian H, Zhao H M, et al. Interface engineering with MoS2-Pd nanoparticles hybrid structure for a low voltage resistive switching memory. Small, 2018, 14: 1702525

    Article  Google Scholar 

  54. Krishnaprasad A, Dev D, Han S S, et al. MoS2 synapses with ultra-low variability and their implementation in Boolean logic. ACS Nano, 2022, 16: 2866–2876

    Article  Google Scholar 

  55. Sun W, Gao B, Chi M, et al. Understanding memristive switching via in situ characterization and device modeling. Nat Commun, 2019, 10: 3453

    Article  Google Scholar 

  56. Choi S, Tan S H, Li Z, et al. SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations. Nat Mater, 2018, 17: 335–340

    Article  Google Scholar 

  57. Zhao X, Liu S, Niu J, et al. Confining cation injection to enhance CBRAM performance by nanopore graphene layer. Small, 2017, 13: 1603948

    Article  Google Scholar 

  58. Mayer J, Giannuzzi L A, Kamino T, et al. TEM sample preparation and FIB-induced damage. MRS Bull, 2007, 32: 400–407

    Article  Google Scholar 

  59. Hus S M, Ge R, Chen P A, et al. Observation of single-defect memristor in an MoS2 atomic sheet. Nat Nanotechnol, 2021, 16: 58–62

    Article  Google Scholar 

  60. Bessonov A A, Kirikova M N, Petukhov D I, et al. Layered memristive and memcapacitive switches for printable electronics. Nat Mater, 2015, 14: 199–204

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (Grant No. 2021YFA1200503) and National Natural Science Foundation of China (Grant Nos. 51991340, 51991341, 52221001, U22A2074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, W., Liu, Y. Recent progress of layered memristors based on two-dimensional MoS2. Sci. China Inf. Sci. 66, 160402 (2023). https://doi.org/10.1007/s11432-023-3751-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-023-3751-y

Keywords

Navigation