Skip to main content
Log in

Accuracy analysis for distributed dynamic state estimation in large-scale systems with a cyclic network graph

  • Research Paper
  • Special Topic: Control, Optimization, and Learning for Networked Systems
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper addresses a distributed dynamic state estimation problem in large-scale systems characterized by a cyclic network graph. The objective is to develop a distributed estimation algorithm for each node to generate local state estimations, based on the coupled measurements and boundary information exchanged with neighboring nodes. Our proposed approach is grounded in the maximum a posteriori (MAP) estimation method, which yields suboptimal results in acyclic network graphs compared with the centralized MAP approach. We extend this approach to systems with a cyclic network graph. Furthermore, we provide an accuracy analysis by deriving bounds for the differences in estimation error covariance and state estimation between the proposed distributed algorithm and the suboptimal centralized MAP method. These bounds apply to a specific category of systems that satisfy certain conditions, including cyclic topology and sparse connections. We demonstrate that these bounds converge asymptotically, with the rate of convergence determined by the loop-free depth of the graph. The loop-free depth of the graph refers to the maximum number of nodes that can be traversed in a cycle without revisiting any node. Finally, we demonstrate the validity of the algorithm through numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hou N, Li J H, Liu H J, et al. Finite-horizon resilient state estimation for complex networks with integral measurements from partial nodes. Sci China Inf Sci, 2022, 65: 132205

    Article  MathSciNet  Google Scholar 

  2. Xiao H C, Ding D R, Dong H L, et al. Adaptive event-triggered state estimation for large-scale systems subject to deception attacks. Sci China Inf Sci, 2022, 65: 122207

    Article  MathSciNet  Google Scholar 

  3. Primadianto A, Lu C N. A review on distribution system state estimation. IEEE Trans Power Syst, 2016, 32: 3875–3883

    Article  Google Scholar 

  4. Liu Y L, Chen W-H, Lu X M. Slow state estimation for singularly perturbed systems with discrete measurements. Sci China Inf Sci, 2021, 64: 129202

    Article  MathSciNet  Google Scholar 

  5. Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Automat Contr, 2004, 49: 1520–1533

    Article  MathSciNet  MATH  Google Scholar 

  6. Xie L, Choi D H, Kar S, et al. Fully distributed state estimation for wide-area monitoring systems. IEEE Trans Smart Grid, 2012, 3: 1154–1169

    Article  Google Scholar 

  7. Gan D, Xie S Y, Liu Z X. Stability of the distributed Kalman filter using general random coefficients. Sci China Inf Sci, 2021, 64: 172204

    Article  MathSciNet  Google Scholar 

  8. Chen Y, Zhu M Z, Lu R Q, et al. Distributed Hfiltering of nonlinear systems with random topology by an event-triggered protocol. Sci China Inf Sci, 2021, 64: 202204

    Article  MathSciNet  Google Scholar 

  9. Battistelli G, Chisci L. Stability of consensus extended Kalman filter for distributed state estimation. Automatica, 2016, 68: 169–178

    Article  MathSciNet  MATH  Google Scholar 

  10. Mitra A, Richards J A, Bagchi S, et al. Resilient distributed state estimation with mobile agents: overcoming Byzantine adversaries, communication losses, and intermittent measurements. Auton Robot, 2019, 43: 743–768

    Article  Google Scholar 

  11. Subbotin M V, Smith R S. Design of distributed decentralized estimators for formations with fixed and stochastic communication topologies. Automatica, 2009, 45: 2491–2501

    Article  MathSciNet  MATH  Google Scholar 

  12. Vu T T, Rahmani A R. Distributed consensus-based Kalman filter estimation and control of formation flying spacecraft: simulation and validation. In: Proceedings of AIAA Guidance, Navigation, and Control Conference, 2015. 1553

  13. Xie L, Choi D H, Kar S. Cooperative distributed state estimation: local observability relaxed. In: Proceedings of IEEE Power and Energy Society General Meeting, 2011. 1–11

  14. Pasqualetti F, Carli R, Bullo F. Distributed estimation via iterative projections with application to power network monitoring. Automatica, 2012, 48: 747–758

    Article  MathSciNet  MATH  Google Scholar 

  15. Tai X, Lin Z Y, Fu M Y, et al. A new distributed state estimation technique for power networks. In: Proceedings of American Control Conference, 2013. 3338–3343

  16. Das S, Moura J M F. Distributed Kalman filtering with dynamic observations consensus. IEEE Trans Signal Process, 2015, 63: 4458–4473

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhou Z W, Fang H T, Hong Y G. Distributed estimation for moving target based on state-consensus strategy. IEEE Trans Automat Contr, 2013, 58: 2096–2101

    Article  MathSciNet  MATH  Google Scholar 

  18. Battistelli G, Chisci L. Kullback-Leibler average, consensus on probability densities, and distributed state estimation with guaranteed stability. Automatica, 2014, 50: 707–718

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen B, Zhang W A, Yu L. Distributed fusion estimation with missing measurements, random transmission delays and packet dropouts. IEEE Trans Automat Contr, 2014, 59: 1961–1967

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen B, Zhang W A, Yu L, et al. Distributed fusion estimation with communication bandwidth constraints. IEEE Trans Automat Contr, 2015, 60: 1398–1403

    Article  MathSciNet  MATH  Google Scholar 

  21. Yan J Q, Yang X, Mo Y L, et al. A distributed implementation of steady-state Kalman filter. IEEE Trans Automat Contr, 2023, 68: 2490–2497

    Article  MathSciNet  Google Scholar 

  22. Sun Y B, Fu M Y, Wang B C, et al. Dynamic state estimation for power networks using distributed MAP technique. Automatica, 2016, 73: 27–37

    Article  MathSciNet  MATH  Google Scholar 

  23. Anderson B D, Moore J B. Optimal Filtering. Mineola: Courier Corporation, 2005

    MATH  Google Scholar 

  24. Sui T J, Marelli D E, Fu M Y, et al. Accuracy analysis for distributed weighted least-squares estimation in finite steps and loopy networks. Automatica, 2018, 97: 82–91

    Article  MathSciNet  MATH  Google Scholar 

  25. Marelli D E, Fu M Y. Distributed weighted least-squares estimation with fast convergence for large-scale systems. Automatica, 2015, 51: 27–39

    Article  MathSciNet  MATH  Google Scholar 

  26. Weiss Y. Correctness of local probability propagation in graphical models with loops. Neural Computation, 2000, 12: 1–41

    Article  Google Scholar 

  27. Ihler A T, Fisher III J W, Willsky A S, et al. Loopy belief propagation: convergence and effects of message errors. J Mach Learn Res, 2005, 6: 905–936

    MathSciNet  MATH  Google Scholar 

  28. Xie K, Cai Q Q, Zhang Z R, et al. Distributed algorithms for average consensus of input data with fast convergence. IEEE Trans Syst Man Cybern Syst, 2021, 51: 2653–2664

    Article  Google Scholar 

  29. Makki S A M, Havas G. Distributed algorithms for depth-first search. Inf Processing Lett, 1996, 60: 7–12

    Article  MathSciNet  MATH  Google Scholar 

  30. Bougerol P. Kalman filtering with random coefficients and contractions. SIAM J Control Optim, 1993, 31: 942–959

    Article  MathSciNet  MATH  Google Scholar 

  31. Meurant G. A review on the inverse of symmetric tridiagonal and block tridiagonal matrices. SIAM J Matrix Anal Appl, 1992, 13: 707–728

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (Grant Nos. 2018YFB1700100, 2020YFB1708600), National Natural Science Foundation of China (Grant Nos. 62173057, 62033006, 61906088), Liaoning Revitalization Talents Program (Grant No. XLYC2007187), Natural Science Foundation of Liaoning (Grant No. 2020-MS-122), and Dalian Young Talents Program (Grant No. 2021RQ038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Wang or Xiaodong Miao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Wang, R., Miao, X. et al. Accuracy analysis for distributed dynamic state estimation in large-scale systems with a cyclic network graph. Sci. China Inf. Sci. 66, 190206 (2023). https://doi.org/10.1007/s11432-022-3846-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3846-1

Keywords

Navigation