Skip to main content
Log in

Transformation of a metasurface on the substrate interface into the same metasurface in a homogenized substrate based on two kinds of modified Babinet’s principles

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Previously, the metasurface was usually manufactured on a dielectric substrate using the printed circuit boards (PCB) technology. However, due to the existence of the substrate interface, the electromagnetic radiation and coupling of the sub-wavelength metasurface becomes more complex for theoretical analysis. To this end, an indirect method is developed to transform the problem of a metasurface in a dielectric half-space into a simpler problem of the same metasurface in a homogenized dielectric space. Specifically, two different theoretical models of complementary metasurfaces in a dielectric half-space are first given. A specific yet unknown relative permittivity is included in one model to realize the above transformation. By comparing these two theoretical models in terms of the surface impedance matrix, the specific yet unknown relative permittivity is analytically derived as \(\sqrt {{\epsilon_{r,{\rm{unk}}}}} = \sqrt {{\epsilon_{r,{\rm{1}}}}} /2 + \sqrt {{\epsilon_{r,{\rm{2}}}}} /2\). Finally, two arbitrary metasurfaces are given to verify the proposed theory for arbitrary incidence wave in dielectric half-space. The theory can greatly simplify the analysis and design of the metasurface in a dielectric halfspace, because only the metasurface in a homogenized dielectric space like vacuum needs to be theoretically solved after completing the above transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater, 2014, 13: 139–150

    Article  Google Scholar 

  2. Liang Y C, Chen J, Long R, et al. Reconfigurable intelligent surfaces for smart wireless environments: channel estimation, system design and applications in 6G networks. Sci China Inf Sci, 2021, 64: 200301

    Article  Google Scholar 

  3. Mutlu M, Ozbay E. A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling. Appl Phys Lett, 2012, 100: 051909

    Article  Google Scholar 

  4. Farmahini-Farahani M, Mosallaei H. Birefringent reflectarray metasurface for beam engineering in infrared. Opt Lett, 2013, 38: 462

    Article  Google Scholar 

  5. Pfeiffer C, Zhang C, Ray V, et al. High performance bianisotropic metasurfaces: asymmetric transmission of light. Phys Rev Lett, 2014, 113: 023902

    Article  Google Scholar 

  6. Ma H F, Wang G Z, Kong G S, et al. Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces. Opt Mater Express, 2014, 4: 1717–1724

    Article  Google Scholar 

  7. Luo Z J, Ren X Y, Wang Q, et al. Anisotropic and nonlinear metasurface for multiple functions. Sci China Inf Sci, 2021, 64: 192301

    Article  Google Scholar 

  8. Ghosh S, Ghosh J, Singh M S, et al. A low-profile multifunctional metasurface reflector for multiband polarization transformation. IEEE Trans Circ Syst II, 2023, 70: 76–80

    Google Scholar 

  9. Ortiz J D, Baena J D, Losada V, et al. Self-complementary metasurface for designing narrow band pass/stop filters. IEEE Microw Wireless Compon Lett, 2013, 23: 291–293

    Article  Google Scholar 

  10. Born N, Reuter M, Koch M, et al. High-Q terahertz bandpass filters based on coherently interfering metasurface reflections. Opt Lett, 2013, 38: 908–910

    Article  Google Scholar 

  11. Reddy M A, Pandeeswari R, Ko S B. Non-bianisotropic complementary split ring resonator metamaterial bandstop filter using cylindrical metal vias. IEEE Trans Circ Syst II, 2023, 70: 959–963

    Google Scholar 

  12. Li A, Kim S, Luo Y, et al. High-power transistor-based tunable and switchable metasurface absorber. IEEE Trans Microwave Theor Techn, 2017, 65: 2810–2818

    Article  Google Scholar 

  13. Zhou Z H, Chen K, Zhao J M, et al. Metasurface Salisbury screen: achieving ultra-wideband microwave absorption. Opt Express, 2017, 25: 30241

    Article  Google Scholar 

  14. Shuang Y, Zhao H T, Wei M L, et al. One-bit quantization is good for programmable coding metasurfaces. Sci China Inf Sci, 2022, 65: 172301

    Article  MathSciNet  Google Scholar 

  15. Chen W J, Chen R, Zhou Y, et al. A switchable metasurface between meta-lens and absorber. IEEE Photon Technol Lett, 2019, 31: 1187–1190

    Article  Google Scholar 

  16. Rabinovich O, Epstein A. Dual-polarized all-metallic metagratings for perfect anomalous reflection. Phys Rev Appl, 2020, 14: 64028

    Article  Google Scholar 

  17. Xu G, Hum S V, Eleftheriades G V. Dual-band reflective metagratings with interleaved meta-wires. IEEE Trans Antenn Propag, 2021, 69: 2181–2193

    Article  Google Scholar 

  18. Lee S G, Lee J H. Azimuthal six-channel retrodirective metagrating. IEEE Trans Antenn Propag, 2021, 69: 3588–3592

    Article  Google Scholar 

  19. Popov V, Boust F, Burokur S N. Controlling diffraction patterns with metagratings. Phys Rev Appl, 2018, 10: 11002

    Article  Google Scholar 

  20. Casolaro A, Toscano A, Alu A, et al. Dynamic beam steering with reconfigurable metagratings. IEEE Trans Antenn Propag, 2020, 68: 1542–1552

    Article  Google Scholar 

  21. Wang Y F, Ge Y H, Chen Z Z, et al. Broadband high-efficiency ultrathin metasurfaces with simultaneous independent control of transmission and reflection amplitudes and phases. IEEE Trans Microwave Theor Techn, 2022, 70: 254–263

    Article  Google Scholar 

  22. Gao X, Han X, Cao W P, et al. Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface. IEEE Trans Antenn Propag, 2015, 63: 3522–3530

    Article  MathSciNet  MATH  Google Scholar 

  23. Fang C, Cheng Y Z, He Z Q, et al. A broadband reflective linear polarization converter based on multi-reflection interference theory. In: Proceedings of Progress In Electromagnetic Research Symposium (PIERS), 2016. 3033–3036

  24. Whitbourn L B, Compton R C. Equivalent-circuit formulas for metal grid reflectors at a dielectric boundary. Appl Opt, 1985, 24: 217–220

    Article  Google Scholar 

  25. Jiang S C, Xiong X, Hu Y S, et al. Controlling the polarization state of light with a dispersion-free metastructure. Phys Rev X, 2014, 4: 021026

    Google Scholar 

  26. Liu X B, Zhang J S, Li W, et al. An analytical design of cross polarization converter based on the gangbuster metasurface. Antenn Wirel Propag Lett, 2017, 16: 1028–1031

    Article  Google Scholar 

  27. Liu X B, Li W, Zhao Z Z, et al. Tangential network transmission theory of reflective metasurface with obliquely incident plane waves. IEEE Trans Microwave Theor Techn, 2018, 66: 64–72

    Article  Google Scholar 

  28. Compton R C, Whitbourn L B, McPhedran R C. Strip gratings at a dielectric interface and application of Babinet’s principle. Appl Opt, 1984, 23: 3236–3242

    Article  Google Scholar 

  29. Tretyakov S A. Analytical Modeling in Applied Electromagnetics. Norwood: Artech House, 2003

    MATH  Google Scholar 

  30. Kuester E F, Mohamed M A, Piket-May M, et al. Averaged transition conditions for electromagnetic fields at a metafilm. IEEE Trans Antenn Propag, 2003, 51: 2641–2651

    Article  Google Scholar 

  31. Luukkonen O, Simovski C, Granet G, et al. Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches. IEEE Trans Antenn Propag, 2008, 56: 1624–1632

    Article  Google Scholar 

  32. Padooru Y R, Yakovlev A B, Chen P Y, et al. Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays. J Appl Phys, 2012, 112

  33. Holloway C L, Kuester E F. A homogenization technique for obtaining generalized sheet-transition conditions for a metafilm embedded in a magnetodielectric interface. IEEE Trans Antenn Propag, 2016, 64: 4671–4686

    Article  Google Scholar 

  34. Moeini S. Homogenization of fractal metasurface based on extension of Babinet-booker’s principle. Antennas Wirel Propag Lett, 2019, 18: 1061–1065

    Article  Google Scholar 

  35. Ney M M. Method of moments as applied to electromagnetic problems. IEEE Trans Microwave Theor Techn, 1985, 33: 972–980

    Article  Google Scholar 

  36. Harriton R F. Field Computation by Moment Methods. Hoboken: Wiley-IEEE Press, 1993

    Book  Google Scholar 

  37. Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett, 1996, 76: 4773–4776

    Article  Google Scholar 

  38. Liu X B, Zhang J S, Chen X M, et al. A generalized accurate model for complementary periodic subwavelength metasurface based on Babinet principle. IEEE Trans Antenn Propag, 2020, 68: 3780–3790

    Article  Google Scholar 

  39. Liu X B, Xue W, Chen X M, et al. On the uniqueness of virtual substrate for metasurface in a dielectric half-space. Sci China Inf Sci, 2021, 65: 112302

    Article  MathSciNet  Google Scholar 

  40. Liu X B, Lu R, Zhu S T, et al. Analysis of complementary metasurfaces based on the Babinet principle. IEEE Microw Wireless Compon Lett, 2019, 29: 8–10

    Article  Google Scholar 

  41. Xiao S Y, He Q, Qu C, et al. Mode-expansion theory for inhomogeneous meta-surfaces. Opt Express, 2013, 21: 27219–27237

    Article  Google Scholar 

  42. Munk B A. Frequency Selective Surfaces: Theory and Design. Hoboken: Wiley Press, 2000

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grants Nos. 62101428, 62171362), Postdoctoral Science Foundation of China (Grant No. 2021M692530), and Fundamental Research Funds for the Central Universities (Grant No. xzy012022089).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Cheng or Xiaoming Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Lu, R., Zhang, A. et al. Transformation of a metasurface on the substrate interface into the same metasurface in a homogenized substrate based on two kinds of modified Babinet’s principles. Sci. China Inf. Sci. 66, 222306 (2023). https://doi.org/10.1007/s11432-022-3832-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3832-6

Keywords

Navigation