Skip to main content
Log in

Coverage control for mobile sensor networks with unknown terrain roughness and nonuniform time-varying communication delays

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper investigates the coverage control problem on a circle with unknown terrain roughness and nonuniform time-varying communication delays. Adaptive coverage control laws are proposed for mobile sensors to collaboratively estimate the unknown roughness function using the basis function approximation approach. Moreover, contrary to existing studies, nonuniform time-varying communication delays are considered in this paper. Under the proposed adaptive coverage control laws, the sensor network can be driven to its optimal configuration minimizing the coverage cost function in the presence of nonuniform communication delays, and each sensor can learn the true roughness function. Finally, a simulation example is provided to show the effectiveness of the proposed control laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu B, Xie L H, Han D, et al. A survey on recent progress in control of swarm systems. Sci China Inf Sci, 2017, 60: 070201

    Article  MathSciNet  Google Scholar 

  2. Guo K X, Li X X, Xie L H. Simultaneous cooperative relative localization and distributed formation control for multiple UAVs. Sci China Inf Sci, 2020, 63: 119201

    Article  MathSciNet  Google Scholar 

  3. Tuan C-C, Wu Y-C. Coverage and connectivity-aware clustering within k hops in wireless sensor and actuator networks. Sci China Inf Sci, 2014, 57: 062311

    Article  Google Scholar 

  4. Cortés J, Martínez S, Karataş T, et al. Coverage control for mobile sensing networks. IEEE Trans Robot Automat, 2004, 20: 243–255

    Article  Google Scholar 

  5. Schwager M, Rus D, Slotine J J. Decentralized, adaptive coverage control for networked robots. Int J Robotics Res, 2009, 28: 357–375

    Article  Google Scholar 

  6. Nowzari C, Cortés J. Self-triggered coordination of robotic networks for optimal deployment. Automatica, 2012, 48: 1077–1087

    Article  MathSciNet  MATH  Google Scholar 

  7. Abbasi F, Mesbahi A, Velni J M. A team-based approach for coverage control of moving sensor networks. Automatica, 2017, 81: 342–349

    Article  MathSciNet  MATH  Google Scholar 

  8. Jiang B, Sun Z, Anderson B D O, et al. Higher order mobile coverage control with applications to clustering of discrete sets. Automatica, 2019, 102: 27–33

    Article  MathSciNet  MATH  Google Scholar 

  9. Li W, Cassandras C G. Distributed cooperative coverage control of sensor networks. In: Proceedings of the 44th IEEE Conference on Decision and Control, Seville, 2005. 2542–2547

  10. Zhong M, Cassandras C G. Distributed coverage control and data collection with mobile sensor networks. IEEE Trans Automat Contr, 2011, 56: 2445–2455

    Article  MathSciNet  MATH  Google Scholar 

  11. Sun X, Cassandras C G, Meng X. Exploiting submodularity to quantify near-optimality in multi-agent coverage problems. Automatica, 2019, 100: 349–359

    Article  MathSciNet  MATH  Google Scholar 

  12. Sun C, Welikala S, Cassandras C G. Optimal composition of heterogeneous multi-agent teams for coverage problems with performance bound guarantees. Automatica, 2020, 117: 108961

    Article  MathSciNet  MATH  Google Scholar 

  13. Cortés J, Bullo F. Coordination and geometric optimization via distributed dynamical systems. SIAM J Control Optim, 2005, 44: 1543–1574

    Article  MathSciNet  MATH  Google Scholar 

  14. Lekien F, Leonard N E. Nonuniform coverage and cartograms. SIAM J Control Optim, 2009, 48: 351–372

    Article  MathSciNet  MATH  Google Scholar 

  15. Hu J, Xu Z. Distributed cooperative control for deployment and task allocation of unmanned aerial vehicle networks. IET Control Theor Appl, 2013, 7: 1574–1582

    Article  MathSciNet  Google Scholar 

  16. Frasca P, Garin F, Gerencser B, et al. Optimal one-dimensional coverage by unreliable sensors. SIAM J Control Optim, 2015, 53: 3120–3140

    Article  MathSciNet  MATH  Google Scholar 

  17. Song C, Liu L, Feng G, et al. Coverage control for heterogeneous mobile sensor networks on a circle. Automatica, 2016, 63: 349–358

    Article  MathSciNet  MATH  Google Scholar 

  18. Song C, Fan Y. Coverage control for mobile sensor networks with limited communication ranges on a circle. Automatica, 2018, 92: 155–161

    Article  MathSciNet  MATH  Google Scholar 

  19. Song C, Liu L, Feng G, et al. Coverage control for heterogeneous mobile sensor networks with bounded position measurement errors. Automatica, 2020, 120: 109118

    Article  MathSciNet  MATH  Google Scholar 

  20. Davydov A, Diaz-Mercado Y. Sparsity structure and optimality of multi-robot coverage control. IEEE Control Syst Lett, 2020, 4: 13–18

    Article  MathSciNet  Google Scholar 

  21. Song C, Fan Y, Xu S. Finite-time coverage control for multiagent systems with unidirectional motion on a closed curve. IEEE Trans Cybern, 2019, 51: 3071–3078

    Article  Google Scholar 

  22. Kim T H, Sugie T. Cooperative control for target-capturing task based on a cyclic pursuit strategy. Automatica, 2007, 43: 1426–1431

    Article  MathSciNet  MATH  Google Scholar 

  23. Zheng R, Liu Y, Sun D. Enclosing a target by nonholonomic mobile robots with bearing-only measurements. Automatica, 2015, 53: 400–407

    Article  MathSciNet  MATH  Google Scholar 

  24. Casbeer D W, Kingston D B, Beard R W, et al. Cooperative forest fire surveillance using a team of small unmanned air vehicles. Int J Syst Sci, 2006, 37: 351–360

    Article  MATH  Google Scholar 

  25. Leonard N E, Paley D A, Lekien F, et al. Collective motion, sensor networks, and ocean sampling. Proc IEEE, 2007, 95: 48–74

    Article  Google Scholar 

  26. Zhai C, Zhang H T, Xiao G, et al. Design and assessment of sweep coverage algorithms for multiagent systems with online learning strategies. IEEE Trans Syst Man Cybern Syst, 2022, 52: 5494–5505

    Article  Google Scholar 

  27. Cao M, Cao K, Li X, et al. Distributed multi-robot sweep coverage for a region with unknown workload distribution. Auton Intell Syst, 2021, 1: 13

    Article  Google Scholar 

  28. Leonard N E, Olshevsky A. Nonuniform coverage control on the line. IEEE Trans Automat Contr, 2013, 58: 2743–2755

    Article  MathSciNet  MATH  Google Scholar 

  29. Davison P, Leonard N E, Olshevsky A, et al. Nonuniform line coverage from noisy scalar measurements. IEEE Trans Automat Contr, 2015, 60: 1975–1980

    Article  MathSciNet  MATH  Google Scholar 

  30. Dou L, Song C, Wang X, et al. Nonuniform coverage control for heterogeneous mobile sensor networks on the line. Automatica, 2017, 81: 464–470

    Article  MathSciNet  MATH  Google Scholar 

  31. Sharifi F, Zhang Y, Aghdam A G. A distributed deployment strategy for multi-agent systems subject to health degradation and communication delays. J Intell Robot Syst, 2014, 73: 623–633

    Article  Google Scholar 

  32. Aleksandrov A, Fradkov A, Semenov A. Delayed and switched control of formations on a line segment: delays and switches do not matter. IEEE Trans Automat Contr, 2019, 65: 794–800

    Article  MathSciNet  MATH  Google Scholar 

  33. Qu Y, Xu H, Song C, et al. Coverage control for mobile sensor networks with time-varying communication delays on a closed curve. J Franklin Inst, 2020, 357: 12109–12124

    Article  MathSciNet  MATH  Google Scholar 

  34. Sun Y G, Wang L. Consensus of multi-agent systems in directed networks with nonuniform time-varying delays. IEEE Trans Automat Contr, 2009, 54: 1607–1613

    Article  MATH  Google Scholar 

  35. Qin J, Gao H. A sufficient condition for convergence of sampled-data consensus for double-integrator dynamics with nonuniform and time-varying communication delays. IEEE Trans Automat Contr, 2012, 57: 2417–2422

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu K, Xie G, Wang L. Containment control for second-order multi-agent systems with time-varying delays. Syst Control Lett, 2014, 67: 24–31

    Article  MathSciNet  MATH  Google Scholar 

  37. Hua C C, Li K, Guan X P. Semi-global/global output consensus for nonlinear multiagent systems with time delays. Automatica, 2019, 103: 480–489

    Article  MathSciNet  MATH  Google Scholar 

  38. Dong X, Han L, Li Q, et al. Containment analysis and design for general linear multi-agent systems with time-varying delays. Neurocomputing, 2016, 173: 2062–2068

    Article  Google Scholar 

  39. Zhang Z, Shi Y, Zhang Z, et al. Modified order-reduction method for distributed control of multi-spacecraft networks with time-varying delays. IEEE Trans Control Netw Syst, 2016, 5: 79–92

    Article  MathSciNet  MATH  Google Scholar 

  40. Li Y, Huang Y, Lin P, et al. Distributed rotating consensus of second-order multi-agent systems with nonuniform delays. Syst Control Lett, 2018, 117: 18–22

    Article  MathSciNet  MATH  Google Scholar 

  41. Lin P, Dai M, Song Y. Consensus stability of a class of second-order multi-agent systems with nonuniform time-delays. J Franklin Inst, 2014, 351: 1571–1576

    Article  MathSciNet  MATH  Google Scholar 

  42. Tang Z J, Huang T Z, Shao J L, et al. Consensus of second-order multi-agent systems with nonuniform time-varying delays. Neurocomputing, 2012, 97: 410–414

    Article  Google Scholar 

  43. Olver P J, Shakiban C. Applied Linear Algebra. New York: Springer, 2018

    MATH  Google Scholar 

  44. Christensen O, Christensen K L. Linear independence and series expansions in function spaces. Am Math Mon, 2006, 113: 611–627

    Article  MathSciNet  MATH  Google Scholar 

  45. Schwager M, Vitus M P, Powers S, et al. Robust adaptive coverage control for robotic sensor networks. IEEE Trans Control Netw Syst, 2015, 4: 462–476

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Research Grants Council of the Hong Kong Special Administrative Region of China (Grant No. CityU/11217619), National Natural Science Foundation of China (Grant No. 62273182), Fundamental Research Funds for the Central Universities (Grant No. 30921011213), and Sichuan Science and Technology Program (Grant No. 2022NSFSC0444).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Song, C. & Liu, L. Coverage control for mobile sensor networks with unknown terrain roughness and nonuniform time-varying communication delays. Sci. China Inf. Sci. 66, 222204 (2023). https://doi.org/10.1007/s11432-022-3798-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3798-4

Keywords

Navigation