Skip to main content
Log in

Higher-order temporal interactions promote the cooperation in the multiplayer snowdrift game

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

To explore evolutionary dynamics of collective behaviors within the interconnected population, previous studies usually map non-pairwise interactions to higher-order static networks. However, from human communications to chemical reactions and biological systems, interactions often change over time, which cannot be simply described by higher-order static networks. In this study, we introduce time effects into higher-order networks and correspondingly investigate the evolutionary dynamics of multiplayer snowdrift games on higher-order temporal networks. Specifically, extensive simulations from four empirical datasets reveal that (1) the temporal effect of higher-order networks can facilitate the evolution of cooperation; (2) the higher-order topology can enhance the emergence of cooperation within a certain range of parameters; (3) the contribution of temporal burstiness and participants burstiness to cooperation is reversed. Furthermore, we theoretically demonstrate that the higher-order structure will suppress the propagation of defection in temporal networks. Our findings offer a new avenue for studying the evolution of altruistic behaviors in realistic complex networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Du J M, Wu B, Wang L. Aspiration dynamics in structured population acts as if in a well-mixed one. Sci Rep, 2015, 5: 8014

    Article  Google Scholar 

  2. Zhou L, Wu B, Du J M, et al. Aspiration dynamics generate robust predictions in heterogeneous populations. Nat Commun, 2021, 12: 3250

    Article  Google Scholar 

  3. Su Q, McAvoy A, Mori Y, et al. Evolution of prosocial behaviours in multilayer populations. Nat Hum Behav, 2022, 6: 338–348

    Article  Google Scholar 

  4. Battiston F, Cencetti G, Iacopini I, et al. Networks beyond pairwise interactions: Structure and dynamics. Phys Rep, 2020, 874: 1–92

    Article  MathSciNet  MATH  Google Scholar 

  5. Benson A R, Abebe R, Schaub M T, et al. Simplicial closure and higher-order link prediction. Proc Natl Acad Sci USA, 2018, 115: 11221–11230

    Article  Google Scholar 

  6. Perc M, Gómez-Gardeñes J, Szolnoki A, et al. Evolutionary dynamics of group interactions on structured populations: a review. J R Soc Interface, 2013, 10: 20120997

    Article  Google Scholar 

  7. Li A M, Broom M, Du J M, et al. Evolutionary dynamics of general group interactions in structured populations. Phys Rev E, 2016, 93: 022407

    Article  MathSciNet  Google Scholar 

  8. Jian Q, Li X P, Wang J, et al. Impact of reputation assortment on tag-mediated altruistic behaviors in the spatial lattice. Appl Math Computation, 2021, 396: 125928

    Article  MathSciNet  MATH  Google Scholar 

  9. Wu B, Traulsen A, Gokhale C S. Dynamic properties of evolutionary multi-player games in finite populations. Games, 2013, 4: 182–199

    Article  MathSciNet  MATH  Google Scholar 

  10. Du J M, Wu B, Altrock P M, et al. Aspiration dynamics of multi-player games in finite populations. J R Soc Interface, 2014, 11: 20140077

    Article  Google Scholar 

  11. Su Q, Zhou L, Wang L. Evolutionary multiplayer games on graphs with edge diversity. Plos Comput Biol, 2019, 15: e1006947

    Article  Google Scholar 

  12. Govaert A, Cao M. Zero-determinant strategies in repeated multiplayer social dilemmas with discounted payoffs. IEEE Trans Automat Contr, 2020, 66: 4575–4588

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang Z, Jusup M, Guo H, et al. Communicating sentiment and outlook reverses inaction against collective risks. Proc Natl Acad Sci USA, 2020, 117: 17650–17655

    Article  Google Scholar 

  14. Guo P L, Wang Y Z, Li H T. Stable degree analysis for strategy profiles of evolutionary networked games. Sci China Inf Sci, 2016, 59: 052204

    Article  Google Scholar 

  15. Alvarez-Rodriguez U, Battiston F, de Arruda G F, et al. Evolutionary dynamics of higher-order interactions in social networks. Nat Hum Behav, 2021, 5: 586–595

    Article  Google Scholar 

  16. Xu Y, Feng M L, Zhu Y Y, et al. Multi-player snowdrift game on scale-free simplicial complexes. Phys A-Stat Mech Its Appl, 2022, 604: 127698

    Article  MathSciNet  MATH  Google Scholar 

  17. Li D, Song W B, Liu J M. Complex network evolution model based on turing pattern dynamics. IEEE Trans Pattern Anal Mach Intell, 2023, 45: 4229–4244

    Article  Google Scholar 

  18. Shi D H, Chen Z, Sun X, et al. Computing cliques and cavities in networks. Commun Phys, 2021, 4: 249

    Article  Google Scholar 

  19. Majhi S, Perc M, Ghosh D. Dynamics on higher-order networks: a review. J R Soc Interface, 2022, 19: 20220043

    Article  Google Scholar 

  20. Schlager D, Clauß K, Kuehn C. Stability analysis of multiplayer games on adaptive simplicial complexes. Chaos, 2022, 32: 053128

    Article  MathSciNet  Google Scholar 

  21. Kumar A, Chowdhary S, Capraro V, et al. Evolution of honesty in higher-order social networks. Phys Rev E, 2021, 104: 054308

    Article  MathSciNet  Google Scholar 

  22. Capraro V, Perc M. Mathematical foundations of moral preferences. J R Soc Interface, 2021, 18: 20200880

    Article  Google Scholar 

  23. Civilini A, Anbarci N, Latora V. Evolutionary game model of group choice dilemmas on hypergraphs. Phys Rev Lett, 2021, 127: 268301

    Article  MathSciNet  Google Scholar 

  24. Iacopini I, Petri G, Barrat A, et al. Simplicial models of social contagion. Nat Commun, 2019, 10: 2485

    Article  Google Scholar 

  25. St-Onge G, Sun H, Allard A, et al. Universal nonlinear infection kernel from heterogeneous exposure on higher-order networks. Phys Rev Lett, 2021, 127: 158301

    Article  MathSciNet  Google Scholar 

  26. Skardal P S, Arenas A. Abrupt desynchronization and extensive multistability in globally coupled oscillator simplexes. Phys Rev Lett, 2019, 122: 248301

    Article  Google Scholar 

  27. Ghorbanchian R, Restrepo J G, Torres J J, et al. Higher-order simplicial synchronization of coupled topological signals. Commun Phys, 2021, 4: 120

    Article  Google Scholar 

  28. Neuhäuser L, Mellor A, Lambiotte R. Multibody interactions and nonlinear consensus dynamics on networked systems. Phys Rev E, 2020, 101: 032310

    Article  MathSciNet  Google Scholar 

  29. Sahasrabuddhe R, Neuhauser L, Lambiotte R. Modelling non-linear consensus dynamics on hypergraphs. J Phys Complex, 2021, 2: 025006

    Article  Google Scholar 

  30. Chowdhary S, Kumar A, Cencetti G, et al. Simplicial contagion in temporal higher-order networks. J Phys Complex, 2021, 2: 035019

    Article  Google Scholar 

  31. Wang H, Zhang H F, Zhu P C, et al. Interplay of simplicial awareness contagion and epidemic spreading on time-varying multiplex networks. Chaos, 2022, 32: 083110

    Article  MathSciNet  Google Scholar 

  32. Li X, Zhang X, Huangpeng Q Z, et al. Event detection in temporal social networks using a higher-order network model. Chaos, 2021, 31: 113144

    Article  Google Scholar 

  33. Wu B, Zhou D, Fu F, et al. Evolution of cooperation on stochastic dynamical networks. Plos One, 2010, 5: e11187

    Article  Google Scholar 

  34. Wu B, Zhou D, Wang L. Evolutionary dynamics on stochastic evolving networks for multiple-strategy games. Phys Rev E, 2011, 84: 046111

    Article  Google Scholar 

  35. Du J, Wu Z R. Evolutionary dynamics of cooperation in dynamic networked systems with active striving mechanism. Appl Math Computation, 2022, 430: 127295

    Article  MathSciNet  MATH  Google Scholar 

  36. Li A M, Zhou L, Su Q, et al. Evolution of cooperation on temporal networks. Nat Commun, 2020, 11: 2259

    Article  Google Scholar 

  37. Chiong R, Kirley M. Effects of iterated interactions in multiplayer spatial evolutionary games. IEEE Trans Evol Computat, 2012, 16: 537–555

    Article  Google Scholar 

  38. Gokhale C S, Traulsen A. Evolutionary games in the multiverse. Proc Natl Acad Sci USA, 2010, 107: 5500–5504

    Article  MathSciNet  Google Scholar 

  39. Zhang J L, Cao M. Strategy competition dynamics of multi-agent systems in the framework of evolutionary game theory. IEEE Trans Circuits Syst II, 2020, 67: 152–156

    Google Scholar 

  40. Kibanov M, Atzmueller M, Scholz C, et al. Temporal evolution of contacts and communities in networks of face-to-face human interactions. Sci China Inf Sci, 2014, 57: 032103

    Article  Google Scholar 

  41. Génois M, Barrat A. Can co-location be used as a proxy for face-to-face contacts? EPJ Data Sci, 2018, 7: 11

    Article  Google Scholar 

  42. Fournet J, Barrat A. Contact patterns among high school students. Plos One, 2014, 9: e107878

    Article  Google Scholar 

  43. Vanhems P, Barrat A, Cattuto C, et al. Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. Plos One, 2013, 8: e73970

    Article  Google Scholar 

  44. Génois M, Vestergaard C L, Fournet J, et al. Data on face-to-face contacts in an office building suggest a low-cost vaccination strategy based on community linkers. Net Sci, 2015, 3: 326–347

    Article  Google Scholar 

  45. Wang H, Ma C, Chen H S, et al. Full reconstruction of simplicial complexes from binary contagion and Ising data. Nat Commun, 2022, 13: 3043

    Article  Google Scholar 

  46. Iacopini I, Petri G, Baronchelli A, et al. Group interactions modulate critical mass dynamics in social convention. Commun Phys, 2022, 5: 64

    Article  Google Scholar 

  47. Barabási A L. The origin of bursts and heavy tails in human dynamics. Nature, 2005, 435: 207–211

    Article  Google Scholar 

  48. Takaguchi T, Masuda N, Holme P. Bursty communication patterns facilitate spreading in a threshold-based epidemic dynamics. Plos One, 2013, 8: e68629

    Article  Google Scholar 

  49. Gauvin L, Génois M, Karsai M, et al. Randomized reference models for temporal networks. SIAM Rev, 2022, 64: 763–830

    Article  MathSciNet  MATH  Google Scholar 

  50. Nowak M A, May R M. Evolutionary games and spatial chaos. Nature, 1992, 359: 826–829

    Article  Google Scholar 

  51. Petri G, Barrat A. Simplicial activity driven model. Phys Rev Lett, 2018, 121: 228301

    Article  Google Scholar 

  52. Perra N, Gonçalves B, Pastor-Satorras R, et al. Activity driven modeling of time varying networks. Sci Rep, 2012, 2: 469

    Article  Google Scholar 

  53. Li X-J, Li C, Li X. The impact of information dissemination on vaccination in multiplex networks. Sci China Inf Sci, 2022, 65: 172202

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 62025602, 62173247, U1803263), Tianjin Municipal Natural Science Foundation (Grant No. 22JCZDJC00550), and Tianjin University of Technology Postgraduate Research Innovation Project (Grant Nos. YJ2239, YJ2240).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Wang, Chengyi Xia or Zhen Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Wang, J., Xia, C. et al. Higher-order temporal interactions promote the cooperation in the multiplayer snowdrift game. Sci. China Inf. Sci. 66, 222208 (2023). https://doi.org/10.1007/s11432-022-3738-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3738-3

Keywords

Navigation