Skip to main content
Log in

UAV swarm formation reconfiguration control based on variable-stepsize MPC-APCMPIO algorithm

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

For a complex operational environment, to actualize safe obstacle avoidance and collision avoidance, a swarm must be capable of autonomous formation reconfiguration. First, this paper introduces the basic pigeon-inspired optimization (PIO) algorithm, and establishes the unmanned aerial vehicle motion model and the virtual leader swarm formation control structure. Then, given the above knowledge, the basic error objective function of a UAV swarm, obstacle avoidance objective function, and collision avoidance objective function are devised based on the variable-stepsize model predictive control technique. Next, the adaptive perception Cauchy mutation PIO algorithm is proposed by introducing the Cauchy mutation operator, adaptive weight factor, and roulette wheel selection into the basic PIO. This algorithm is used to optimally solve the abovementioned swarm objective functions. Ultimately, a set of comparative simulations are performed to verify the effectiveness and reliability of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Huo M Z, Duan H B, Yang Q, et al. Live-fly experimentation for pigeon-inspired obstacle avoidance of quadrotor unmanned aerial vehicles. Sci China Inf Sci, 2019, 62: 052201

    Article  MathSciNet  Google Scholar 

  2. Tai J J, Phang S K, Wong F Y M. COAA* — an optimized obstacle avoidance and navigational algorithm for UAVs operating in partially observable 2D environments. Un Sys, 2022, 10: 159–174

    Article  Google Scholar 

  3. Alladi T, Naren, Bansal G, et al. SecAuthUAV: a novel authentication scheme for UAV-ground station and UAV-UAV communication. IEEE Trans Veh Technol, 2020, 69: 15068–15077

    Article  Google Scholar 

  4. Kim S K, Ahn C K, Shi P. Performance recovery tracking-controller for quadcopters via invariant dynamic surface approach. IEEE Trans Ind Inf, 2019, 15: 5235–5243

    Article  Google Scholar 

  5. Wang X K, Shen L C, Liu Z H, et al. Coordinated flight control of miniature fixed-wing UAV swarms: methods and experiments. Sci China Inf Sci, 2019, 62: 212204

    Article  MathSciNet  Google Scholar 

  6. Harikumar K, Senthilnath J, Sundaram S. Multi-UAV Oxyrrhis marina-inspired search and dynamic formation control for forest firefighting. IEEE Trans Automat Sci Eng, 2019, 16: 863–873

    Article  Google Scholar 

  7. Zheng Y J, Du Y C, Ling H F, et al. Evolutionary collaborative human-UAV search for escaped criminals. IEEE Trans Evol Computat, 2020, 24: 217–231

    Article  Google Scholar 

  8. Yao K L, Xu Y H, Li H, et al. Leveraging partially overlapping channels for intra- and inter-coalition communication in cooperative UAV swarms. Sci China Inf Sci, 2021, 64: 140305

    Article  MathSciNet  Google Scholar 

  9. Oubbati O S, Atiquzzaman M, Lorenz P, et al. Search: an SDN-enabled approach for vehicle path-planning. IEEE Trans Veh Technol, 2020, 69: 14523–14536

    Article  Google Scholar 

  10. Aiello G, Hopps F, Santisi D, et al. The employment of unmanned aerial vehicles for analyzing and mitigating disaster risks in industrial sites. IEEE Trans Eng Manage, 2020, 67: 519–530

    Article  Google Scholar 

  11. Kim H, Ben-Othman J. A collision-free surveillance system using smart UAVs in multi domain IoT. IEEE Commun Lett, 2018, 22: 2587–2590

    Article  Google Scholar 

  12. Sawadsitang S, Niyato D, Tan P S, et al. Joint ground and aerial package delivery services: a stochastic optimization approach. IEEE Trans Intell Transp Syst, 2019, 20: 2241–2254

    Article  Google Scholar 

  13. Das A, Shirazipourazad S, Hay D, et al. Tracking of multiple targets using optimal number of UAVs. IEEE Trans Aerosp Electron Syst, 2019, 55: 1769–1784

    Article  Google Scholar 

  14. Maddikunta P K R, Hakak S, Alazab M, et al. Unmanned aerial vehicles in smart agriculture: applications, requirements, and challenges. IEEE Sens J, 2021, 21: 17608–17619

    Article  Google Scholar 

  15. Qin H L, Meng Z H, Meng W, et al. Autonomous exploration and mapping system using heterogeneous UAVs and UGVs in GPS-denied environments. IEEE Trans Veh Technol, 2019, 68: 1339–1350

    Article  Google Scholar 

  16. Hu J Q, Wu H S, Zhan R J, et al. Self-organized search-attack mission planning for UAV swarm based on wolf pack hunting behavior. J Syst Eng Electron, 2021, 32: 1463–1476

    Article  Google Scholar 

  17. Guo K X, Li X X, Xie L H. Simultaneous cooperative relative localization and distributed formation control for multiple UAVs. Sci China Inf Sci, 2020, 63: 119201

    Article  MathSciNet  Google Scholar 

  18. Hu J W, Wang M, Zhao C H, et al. Formation control and collision avoidance for multi-UAV systems based on Voronoi partition. Sci China Technol Sci, 2020, 63: 65–72

    Article  Google Scholar 

  19. Liu C, Wang M, Zeng Q, et al. Leader-following flocking for unmanned aerial vehicle swarm with distributed topology control. Sci China Inf Sci, 2020, 63: 140312

    Article  MathSciNet  Google Scholar 

  20. Liao F, Teo R, Wang J L, et al. Distributed formation and reconfiguration control of VTOL UAVs. IEEE Trans Contr Syst Technol, 2017, 25: 270–277

    Article  Google Scholar 

  21. Wang Y, Wang D B. Tight formation control of multiple unmanned aerial vehicles through an adaptive control method. Sci China Inf Sci, 2017, 60: 070207

    Article  Google Scholar 

  22. Dong X W, Li Y F, Lu C, et al. Time-varying formation tracking for UAV swarm systems with switching directed topologies. IEEE Trans Neural Netw Learn Syst, 2019, 30: 3674–3685

    Article  MathSciNet  Google Scholar 

  23. Tran V P, Santoso F, Garratt M A, et al. Distributed formation control using fuzzy self-tuning of strictly negative imaginary consensus controllers in aerial robotics. IEEE ASME Trans Mechatron, 2021, 26: 2306–2315

    Article  Google Scholar 

  24. Wang Y Z, Yue Y F, Shan M, et al. Formation reconstruction and trajectory replanning for multi-UAV patrol. IEEE ASME Trans Mechatron, 2021, 26: 719–729

    Article  Google Scholar 

  25. Zhang L, Lu Y, Xu S D, et al. Multiple UAVs cooperative formation forming control based on back-stepping-like approach. J System Eng Electron, 2018, 29: 816–822

    Article  Google Scholar 

  26. Wang Y, Cheng Z S, Xiao M. UAVs’ formation keeping control based on multi-agent system consensus. IEEE Access, 2020, 8: 49000–49012

    Article  Google Scholar 

  27. Wang X H, Zhang Y, Wang L Z, et al. Robustness evaluation method for unmanned aerial vehicle swarms based on complex network theory. Chin J Aeronautics, 2020, 33: 352–364

    Article  Google Scholar 

  28. Kamel M A, Yu X, Zhang Y M. Formation control and coordination of multiple unmanned ground vehicles in normal and faulty situations: a review. Annu Rev Control, 2020, 49: 128–144

    Article  MathSciNet  Google Scholar 

  29. Mirzaeinia A, Hassanalian M, Lee K, et al. Energy conservation of V-shaped swarming fixed-wing drones through position reconfiguration. Aerospace Sci Tech, 2019, 94: 105398

    Article  Google Scholar 

  30. Wubben J, Fabra F, Calafate C T, et al. A novel resilient and reconfigurable swarm management scheme. Comput Networks, 2021, 194: 108119

    Article  Google Scholar 

  31. Chu J, Zhou Z, Guo J. Optimal reconfiguration of formation flying using a direct sequential method. IFAC-PapersOnLine, 2017, 50: 9398–9404

    Article  Google Scholar 

  32. Liu G Q, Li B, Ji Y D. A modified HP-adaptive pseudospectral method for multi-UAV formation reconfiguration. ISA Trans, 2022, 129: 217–229

    Article  Google Scholar 

  33. Li B, Zhang J W, Li D, et al. A hybrid offline optimization method for reconfiguration of multi-UAV formations. IEEE Trans Aerosp Electron Syst, 2021, 57: 506–520

    Article  Google Scholar 

  34. Huang D P, Li H Y, Li X. Formation of generic UAVs-USVs system under distributed model predictive control scheme. IEEE Trans Circuits Syst II, 2020, 67: 3123–3127

    Google Scholar 

  35. Hafez A T, Marasco A J, Givigi S N, et al. Solving multi-UAV dynamic encirclement via model predictive control. IEEE Trans Contr Syst Technol, 2015, 23: 2251–2265

    Article  Google Scholar 

  36. Cai Z H, Wang L H, Zhao J, et al. Virtual target guidance-based distributed model predictive control for formation control of multiple UAVs. Chin J Aeronautics, 2020, 33: 1037–1056

    Article  Google Scholar 

  37. Zhang K W, Shi Y, Sheng H Y. Robust nonlinear model predictive control based visual servoing of quadrotor UAVs. IEEE ASME Trans Mechatron, 2021, 26: 700–708

    Article  Google Scholar 

  38. Convens B, Merckaert K, Nicotra M M, et al. Safe, fast, and efficient distributed receding horizon constrained control of aerial robot swarms. IEEE Robot Autom Lett, 2022, 7: 4173–4180

    Article  Google Scholar 

  39. Liu Y Y, Montenbruck J M, Zelazo D, et al. A distributed control approach to formation balancing and maneuvering of multiple multirotor UAVs. IEEE Trans Robot, 2018, 34: 870–882

    Article  Google Scholar 

  40. Luis C E, Schoellig A P. Trajectory generation for multiagent point-to-point transitions via distributed model predictive control. IEEE Robot Autom Lett, 2019, 4: 375–382

    Article  Google Scholar 

  41. Arul S H, Manocha D. DCAD: decentralized collision avoidance with dynamics constraints for agile quadrotor swarms. IEEE Robot Autom Lett, 2020, 5: 1191–1198

    Article  Google Scholar 

  42. Xue Q, Duan H B. Robust attitude control for reusable launch vehicles based on fractional calculus and pigeon-inspired optimization. IEEE CAA J Autom Sin, 2017, 4: 89–97

    Article  MathSciNet  Google Scholar 

  43. Yuan G S, Xia J, Duan H B. A continuous modeling method via improved pigeon-inspired optimization for wake vortices in UAVs close formation flight. Aerospace Sci Tech, 2022, 120: 107259

    Article  Google Scholar 

  44. Yu Y P, Liu J C, Wei C. Hawk and pigeon’s intelligence for UAV swarm dynamic combat game via competitive learning pigeon-inspired optimization. Sci China Tech Sci, 2022, 65: 1072–1086

    Article  Google Scholar 

  45. Duan H B, Yang Z Y. Large civil aircraft receding horizon control based on Cauthy mutation pigeon inspired optimization (in Chinese). Sci Sin Tech, 2018, 48: 277–288

    Article  Google Scholar 

  46. Bai T T, Wang D B, Masood R J. Formation control of quad-rotor UAV via PIO. Sci China Technol Sci, 2022, 65: 432–439

    Article  Google Scholar 

  47. Qiu H X, Duan H B. A multi-objective pigeon-inspired optimization approach to UAV distributed flocking among obstacles. Inf Sci, 2018, 509: 515–529

    Article  MathSciNet  Google Scholar 

  48. Ruan W Y, Duan H B. Multi-UAV obstacle avoidance control via multi-objective social learning pigeon-inspired optimization. Front Inform Technol Electron Eng, 2020, 21: 740–748

    Article  Google Scholar 

  49. Feng Q, Hai X S, Sun B, et al. Resilience optimization for multi-UAV formation reconfiguration via enhanced pigeon-inspired optimization. Chin J Aeronautics, 2022, 35: 110–123

    Article  Google Scholar 

  50. Qi J T, Guo J J, Wang M M, et al. Formation tracking and obstacle avoidance for multiple quadrotors with static and dynamic Obstacles. IEEE Robot Autom Lett, 2022, 7: 1713–1720

    Article  Google Scholar 

  51. Teixeira M A S, Neves-Jr F, Koubaa A, et al. A quadral-fuzzy control approach to flight formation by a fleet of unmanned aerial vehicles. IEEE Access, 2020, 8: 64366–64381

    Article  Google Scholar 

  52. Seo J, Kim Y, Kim S, et al. Collision avoidance strategies for unmanned aerial vehicles in formation flight. IEEE Trans Aerosp Electron Syst, 2017, 53: 2718–2734

    Article  Google Scholar 

  53. Pan Z H, Zhang C X, Xia Y Q, et al. An improved artificial potential field method for path planning and formation control of the multi-UAV systems. IEEE Trans Circuits Syst II, 2022, 69: 1129–1133

    Google Scholar 

  54. Zhao H B, Wen Y M, Wu S T, et al. Dynamic evaluation strategies for multiple aircrafts formation using collision and matching probabilities. IEEE CAA J Autom Sin, 2021, 8: 890–904

    Article  MathSciNet  Google Scholar 

  55. Aggravi M, Pacchierotti C, Giordano P R. Connectivity-maintenance teleoperation of a UAV fleet with wearable haptic feedback. IEEE Trans Automat Sci Eng, 2021, 18: 1243–1262

    Article  Google Scholar 

  56. Fernandes P B, Oliveira R C L, Neto J V F. Trajectory planning of autonomous mobile robots applying a particle swarm optimization algorithm with peaks of diversity. Appl Soft Comput, 2022, 116: 108108

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Grant No. 61973327), National Outstanding Youth Talents Support Program (Grant No. 61822304), Shanghai Municipal Science and Technology Major Project (Grant No. 2021SHZDZX0100), Shanghai Municipal Commission of Science and Technology Project (Grant No. 19511132101), Projects of Major International (Regional) Joint Research Program of NSFC (Grant No. 61720106011), and Science and Technology Research Project of Jiangxi Provincial Department of Education (Grant No. GJJ201410).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delin Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, J., Cheng, J., Xin, B. et al. UAV swarm formation reconfiguration control based on variable-stepsize MPC-APCMPIO algorithm. Sci. China Inf. Sci. 66, 212207 (2023). https://doi.org/10.1007/s11432-022-3735-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3735-5

Keywords

Navigation