Skip to main content
Log in

A FAS approach for stabilization of generalized chained forms: part 1. Discontinuous control laws

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, a type of general nonholonomic systems is proposed, which contains both the Brockett’s two example systems, and their extended n-dimensional chained forms, as special cases. For the stabilization of such systems, a stabilizing controller is proposed based on the fully actuated system (FAS) approach, which is discontinuous at the origin but time-invariant when the open-loop system is time-invariant, and drives the feasible trajectories of the system to the origin exponentially. Furthermore, the proposed FAS approach is also extended to the sub-normal system case and the time-delay system case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Brockett R W. Asymptotic stability and feedback stabilization. Differential Geometric Control Theory, 1983, 27: 181–191

    MathSciNet  Google Scholar 

  2. Duan G R. Brockett’s first example: an FAS approach treatment. J Syst Sci Complex, 2022, 35: 441–456

    Article  MathSciNet  Google Scholar 

  3. Duan G R. Brockett’s second example: an FAS approach treatment. J Syst Sci Complex, 2023, 36: 1789–1808

    Article  MathSciNet  Google Scholar 

  4. Dolgopolik M V, Fradkov A L. Speed-gradient control of the Brockett integrator. SIAM J Control Optim, 2016, 54: 2116–2131

    Article  MathSciNet  Google Scholar 

  5. Zeng S. On the geometric construction of a stabilizing time-invariant state feedback controller for the nonholonomic integrator. Automatica, 2022, 136: 110073

    Article  MathSciNet  Google Scholar 

  6. Willems J C, Baillieul J. Perspectives in control: a conference honoring the work of Roger W. Brockett. IEEE Control Syst Mag, 1999, 19: 61

    Google Scholar 

  7. Sontag E D. Feedback stabilization of nonlinear systems. In: Robust Control of Linear Systems and Nonlinear Control. Boston: Birkhauser, 1990. 61–81

    Chapter  Google Scholar 

  8. Bacciotti A. Local Stabilizability of Nonlinear Control Systems. Singapore: World Scientific, 1992

    Google Scholar 

  9. Zabczyk J. Mathematical Control Theory: An Introduction. 2nd ed. Berlin: Springer, 2020

    Book  Google Scholar 

  10. Kolmanovsky I, McClamroch N. Developments in nonholonomic control problems. IEEE Control Syst Mag, 1995, 15: 20–36

    Article  Google Scholar 

  11. Murray R M, Sastry S S. Nonholonomic motion planning: steering using sinusoids. IEEE Trans Automat Contr, 1993, 38: 700–716

    Article  MathSciNet  Google Scholar 

  12. Astolfi A. Discontinuous control of nonholonomic systems. Syst Control Lett, 1996, 27: 37–45

    Article  MathSciNet  Google Scholar 

  13. Rocha E, Castaños F, Moreno J A. Robust finite-time stabilisation of an arbitrary-order nonholonomic system in chained form. Automatica, 2022, 135: 109956

    Article  MathSciNet  Google Scholar 

  14. Mnif F, Metwally K A E. Particle swarm optimisation of a discontinuous control for a wheeled mobile robot with two trailers. Int J Comput Appl Technol, 2011, 41: 169–176

    Article  Google Scholar 

  15. Marchand N, Alamir M. Discontinuous exponential stabilization of chained form systems. Automatica, 2003, 39: 343–348

    Article  MathSciNet  Google Scholar 

  16. Lin W, Pongvuthithum R, Qian C. Control of high-order nonholonomic systems in power chained form using discontinuous feedback. IEEE Trans Automat Contr, 2022, 47: 108–115

    Article  MathSciNet  Google Scholar 

  17. Lin W, Pongvuthithum R. Recursive design of discontinuous controllers for uncertain driftless systems in power chained form. IEEE Trans Automat Contr, 2000, 45: 1886–1892

    Article  MathSciNet  Google Scholar 

  18. Laiou M C, Astolfi A. Discontinuous control of high-order generalized chained systems. Syst Control Lett, 1999, 37: 309–322

    Article  MathSciNet  Google Scholar 

  19. Khennouf H, de Wit C C. On the construction of stabilizing discontinuous controllers for nonholonomic systems. IFAC Proc Volumes, 1995, 28: 667–672

    Article  Google Scholar 

  20. Defoort M, Floquet T, Perruquetti W, et al. Integral sliding mode control of an extended Heisenberg system. IET Control Theor Appl, 2009, 3: 1409–1424

    Article  MathSciNet  Google Scholar 

  21. Floquet T, Barbot J P, Perruquetti W. Higher-order sliding mode stabilization for a class of nonholonomic perturbed systems. Automatica, 2003, 39: 1077–1083

    Article  MathSciNet  Google Scholar 

  22. Tian Y P, Li S. Exponential stabilization of nonholonomic dynamic systems by smooth time-varying control. Automatica, 2002, 38: 1139–1146

    Article  MathSciNet  Google Scholar 

  23. Samson C. Control of chained systems application to path following and time-varying point-stabilization of mobile robots. IEEE Trans Automat Contr, 1995, 40: 64–77

    Article  MathSciNet  Google Scholar 

  24. Morin P, Samson C. Control of nonlinear chained systems: from the Routh-Hurwitz stability criterion to time-varying exponential stabilizers. IEEE Trans Automat Contr, 2000, 45: 141–146

    Article  MathSciNet  Google Scholar 

  25. Morin P, Pomet J B, Samson C. Design of homogeneous time-varying stabilizing control laws for driftless controllable systems via oscillatory approximation of Lie brackets in closed loop. SIAM J Control Optim, 1999, 38: 22–49

    Article  MathSciNet  Google Scholar 

  26. Jiang Z P. Iterative design of time-varying stabilizers for multi-input systems in chained form. Syst Control Lett, 1996, 28: 255–262

    Article  MathSciNet  Google Scholar 

  27. Pomet J B, Samson C. Time-Varying Exponential Stabilization of Nonholonomic Systems in Power Form. Paris: Rapport de Recherche INRIA, 1993

    Google Scholar 

  28. Xi Z R, Feng G, Jiang Z P, et al. A switching algorithm for global exponential stabilization of uncertain chained systems. IEEE Trans Automat Contr, 2003, 48: 1793–1798

    Article  MathSciNet  Google Scholar 

  29. Sordalen O J, Egeland O. Exponential stabilization of nonholonomic chained systems. IEEE Trans Automat Contr, 1995, 40: 35–49

    Article  MathSciNet  Google Scholar 

  30. Jiang Z-P, Nijmeijer H. A recursive technique for tracking control of nonholonomic systems in chained form. IEEE Trans Automat Contr, 1999, 44: 265–279

    Article  MathSciNet  Google Scholar 

  31. Duan G R. High-order system approaches: I. Full-actuation and parametric design (in Chinese). Acta Autom Sin, 2020, 46: 1333–1345

    Google Scholar 

  32. Duan G R. High-order system approaches: II. Controllability and full-actuation (in Chinese). Acta Autom Sin, 2020, 46: 1571–1581

    Google Scholar 

  33. Duan G R. High-order system approaches: III. Super-observability and observer design (in Chinese). Acta Autom Sin, 2020, 46: 1885–1895

    Google Scholar 

  34. Duan G R, Zhou B. A frequency-domain approach for converting state-space models into high-order fully actuated models. J Syst Sci Complex, 2022, 35: 2046–2061

    Article  MathSciNet  Google Scholar 

  35. Duan G R. High-order fully actuated system approaches: part I. Models and basic procedure. Int J Syst Sci, 2021, 52: 422–435

    Article  MathSciNet  Google Scholar 

  36. Duan G R. High-order fully actuated system approaches: part II. Generalized strict-feedback systems. Int J Syst Sci, 2021, 52: 437–454

    Article  MathSciNet  Google Scholar 

  37. Duan G R. High-order fully actuated system approaches: part III. Robust control and high-order backstepping. Int J Syst Sci, 2021, 52: 952–971

    Article  MathSciNet  Google Scholar 

  38. Duan G R. High-order fully actuated system approaches: part IV. Adaptive control and high-order backstepping. Int J Syst Sci, 2021, 52: 972–989

    Article  MathSciNet  Google Scholar 

  39. Duan G R. High-order fully actuated system approaches: part V. Robust adaptive control. Int J Syst Sci, 2021, 52: 2129–2143

    Article  MathSciNet  Google Scholar 

  40. Duan G R. High-order fully-actuated system approaches: part VI. Disturbance attenuation and decoupling. Int J Syst Sci, 2021, 52: 2161–2181

    Article  MathSciNet  Google Scholar 

  41. Duan G R. High-order fully actuated system approaches: part VII. Controllability, stabilisability and parametric designs. Int J Syst Sci, 2021, 52: 3091–3114

    Article  MathSciNet  Google Scholar 

  42. Duan G R. High-order fully actuated system approaches: part VIII. Optimal control with application in spacecraft attitude stabilisation. Int J Syst Sci, 2022, 53: 54–73

    Article  MathSciNet  Google Scholar 

  43. Duan G R. High-order fully-actuated system approaches: part IX. Generalised PID control and model reference tracking. Int J Syst Sci, 2022, 53: 652–674

    Article  MathSciNet  Google Scholar 

  44. Duan G R. High-order fully actuated system approaches: part X. Basics of discrete-time systems. Int J Syst Sci, 2022, 53: 810–832

    Article  MathSciNet  Google Scholar 

  45. Duan G R. Discrete-time delay systems: part 1. Global fully actuated case. Sci China Inf Sci, 2022, 65: 182201

    Article  MathSciNet  Google Scholar 

  46. Duan G R. Discrete-time delay systems: part 2. Sub-fully actuated case. Sci China Inf Sci, 2022, 65: 192201

    Article  MathSciNet  Google Scholar 

  47. Duan G R. Fully actuated system approaches for continuous-time delay systems: part 1. Systems with state delays only. Sci China Inf Sci, 2023, 66: 112201

    Article  MathSciNet  Google Scholar 

  48. Duan G R. Fully actuated system approaches for continuous-time delay systems: part 2. Systems with input delays. Sci China Inf Sci, 2023, 66: 122201

    Article  MathSciNet  Google Scholar 

  49. Duan G R. Stabilization via fully actuated system approach: a case study. J Syst Sci Complex, 2022, 35: 731–747

    Article  MathSciNet  Google Scholar 

  50. Jiang Z P. Robust exponential regulation of nonholonomic systems with uncertainties. Automatica, 2000, 36: 189–209

    Article  MathSciNet  Google Scholar 

  51. Duan G R. Robust stabilization of time-varying nonlinear systems with time-varying delays: a fully actuated system approach. IEEE Trans Cybern, 2022. doi: https://doi.org/10.1109/TCYB.2022.3217317

  52. Fossen T I. Marine Control Systems. Trondheim: Marine Cybernetics, 2002

    Google Scholar 

  53. Do K D, Jiang Z P, Pan J. Robust adaptive path following of underactuated ships. Automatica, 2004, 40: 929–944

    Article  MathSciNet  Google Scholar 

  54. Hale J K, Lunel S M V. Introduction to Functional Differential Equations. New York: Springer, 1993

    Book  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by Shenzhen Key Laboratory of Control Theory and Intelligent Systems (Grant No. ZDSYS20220330161800001), Major Program of National Natural Science Foundation of China (Grant Nos. 61690210, 61690212), National Natural Science Foundation of China (Grant No. 61333003), and Science Center Program of the National Natural Science Foundation of China (Grant No. 62188101). The author is grateful to his Ph.D. students, Weizhen LIU, Guangtai TIAN, Qin ZHAO, etc., for helping him with reference selection and proofreading. His thanks also go to Prof. Zhongping JIANG, Drs. Wei SUN, Xiang XU, and Tao LIU for helpful discussions and comments. He particularly thanks Dr. Zhongcai ZHANG for helping work out the simulation results. Finally, the author thanks the anonymous reviewers for the helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Ren Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, GR. A FAS approach for stabilization of generalized chained forms: part 1. Discontinuous control laws. Sci. China Inf. Sci. 67, 122201 (2024). https://doi.org/10.1007/s11432-022-3730-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3730-8

Keywords

Navigation