Skip to main content
Log in

Data-driven cooperative output regulation of multi-agent systems under distributed denial of service attacks

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper addresses an optimal, cooperative output regulation problem for multi-agent systems with distributed denial of service attacks and unknown system dynamics. Unlike existing studies, the proposed solution is essentially a learning-based control strategy such that one can obtain a distributed control policy with internal models through online data and analyze the resilience of closed-loop systems, both without the precise knowledge of system dynamics in the state-space model. The efficiency of the proposed methodology is validated using computer simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Su Y F, Huang J. Cooperative output regulation of linear multi-agent systems. IEEE Trans Automat Contr, 2012, 57: 1062–1066

    Article  MathSciNet  MATH  Google Scholar 

  2. Liu W, Huang J. Cooperative global robust output regulation for a class of nonlinear multi-agent systems with switching network. IEEE Trans Automat Contr, 2015, 60: 1963–1968

    Article  MathSciNet  MATH  Google Scholar 

  3. Li X, Soh Y C, Xie L, et al. Cooperative output regulation of heterogeneous linear multi-agent networks via performance allocation. IEEE Trans Automat Contr, 2019, 64: 683–696

    MathSciNet  MATH  Google Scholar 

  4. Zhang D, Deng C, Feng G. Resilient cooperative output regulation for nonlinear multi-agent systems under DoS attacks. IEEE Trans Automat Contr, 2022. doi: https://doi.org/10.1109/TAC.2022.3184388

  5. Yan Y, Chen Z. Cooperative output regulation of linear discrete-time time-delay multi-agent systems by adaptive distributed observers. Neurocomputing, 2019, 331: 33–39

    Article  Google Scholar 

  6. Ren W, Beard R. Distributed Consensus in Multi-vehicle Cooperative Control. London: Springer-Verlag 2008

    Book  MATH  Google Scholar 

  7. Yu Z, Huang D, Jiang H, et al. Distributed consensus for multiagent systems via directed spanning tree based adaptive control. SIAM J Control Optim, 2018, 56: 2189–2217

    Article  MathSciNet  MATH  Google Scholar 

  8. Gao W, Mynuddin M, Wunsch D C, et al. Reinforcement learning-based cooperative optimal output regulation via distributed adaptive internal model. IEEE Trans Neural Netw Learn Syst, 2022, 33: 5229–5240

    Article  MathSciNet  Google Scholar 

  9. Cai H, Lewis F L, Hu G, et al. The adaptive distributed observer approach to the cooperative output regulation of linear multi-agent systems. Automatica, 2017, 75: 299–305

    Article  MathSciNet  MATH  Google Scholar 

  10. Jiang Z P, Bian T, Gao W. Learning-based control: a tutorial and some recent results. FNT Syst Control, 2020, 8: 176–284

    Article  Google Scholar 

  11. Murray J J, Cox C J, Lendaris G G, et al. Adaptive dynamic programming. IEEE Trans Syst Man Cybern C, 2002, 32: 140–153

    Article  Google Scholar 

  12. Kiumarsi B, Vamvoudakis K G, Modares H, et al. Optimal and autonomous control using reinforcement learning: a survey. IEEE Trans Neural Netw Learn Syst, 2018, 29: 2042–2062

    Article  MathSciNet  Google Scholar 

  13. Liu D, Xue S, Zhao B, et al. Adaptive dynamic programming for control: a survey and recent advances. IEEE Trans Syst Man Cybern Syst, 2021, 51: 142–160

    Article  Google Scholar 

  14. Gao W, Jiang Z P. Learning-based adaptive optimal output regulation of linear and nonlinear systems: an overview. Control Theor Technol, 2022, 20: 1–19

    Article  MathSciNet  MATH  Google Scholar 

  15. Li J, Modares H, Chai T, et al. Off-policy reinforcement learning for synchronization in multiagent graphical games. IEEE Trans Neural Netw Learn Syst, 2017, 28: 2434–2445

    Article  MathSciNet  Google Scholar 

  16. Gao W, Jiang Z P, Lewis F L, et al. Leader-to-formation stability of multiagent systems: an adaptive optimal control approach. IEEE Trans Automat Contr, 2018, 63: 3581–3587

    Article  MathSciNet  MATH  Google Scholar 

  17. Ye Z, Zhang D, Wu Z G, et al. A3C-based intelligent event-triggering control of networked nonlinear unmanned marine vehicles subject to hybrid attacks. IEEE Trans Intell Transp Syst, 2022, 23: 12921–12934

    Article  Google Scholar 

  18. Deng C, Zhang D, Feng G. Resilient practical cooperative output regulation for MASs with unknown switching exosystem dynamics under DoS attacks. Automatica, 2022, 139: 110172

    Article  MathSciNet  MATH  Google Scholar 

  19. Specht S M, Lee R B. Distributed denial of service: taxonomies of attacks, tools and countermeasure. In: Proceedings of the International Conference on Parallel and Distributed Computing Systems, Tokyo, 2004. 543–550

  20. Zargar S T, Joshi J, Tipper D. A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks. IEEE Commun Surv Tutorials, 2013, 15: 2046–2069

    Article  Google Scholar 

  21. Xu W, Hu G, Ho D W C, et al. Distributed secure cooperative control under denial-of-service attacks from multiple adversaries. IEEE Trans Cybern, 2020, 50: 3458–3467

    Article  Google Scholar 

  22. Deng C, Wen C. MAS-based distributed resilient control for a class of cyber-physical systems with communication delays under DoS attacks. IEEE Trans Cybern, 2021, 51: 2347–2358

    Article  Google Scholar 

  23. Chen J, Zhang H, Yin G. Distributed dynamic event-triggered secure model predictive control of vehicle platoon against DoS attacks. IEEE Trans Veh Technol, 2023, 72: 2863–2877

    Article  Google Scholar 

  24. Wang X, Hong Y, Huang J, et al. A distributed control approach to a robust output regulation problem for multi-agent linear systems. IEEE Trans Automat Contr, 2010, 55: 2891–2895

    Article  MathSciNet  MATH  Google Scholar 

  25. Hu W, Liu L. Cooperative output regulation of heterogeneous linear multi-agent systems by event-triggered control. IEEE Trans Cybern, 2017, 47: 105–116

    Article  Google Scholar 

  26. Huang J. Nonlinear Output Regulation: Theory and Applications. Philadelphia: SIAM, 2004

    Book  MATH  Google Scholar 

  27. de Persis C, Tesi P. Input-to-state stabilizing control under denial-of-service. IEEE Trans Automat Contr, 2015, 60: 2930–2944

    Article  MathSciNet  MATH  Google Scholar 

  28. Bian T, Jiang Z P. Value iteration and adaptive dynamic programming for data-driven adaptive optimal control design. Automatica, 2016, 71: 348–360

    Article  MathSciNet  MATH  Google Scholar 

  29. Al-Tamimi A, Lewis F L, Abu-Khalaf M. Discrete-time nonlinear HJB solution using approximate dynamic programming: convergence proof. IEEE Trans Syst Man Cybern B, 2008, 38: 943–949

    Article  Google Scholar 

  30. Bian T, Jiang Z P. Reinforcement learning and adaptive optimal control for continuous-time nonlinear systems: a value iteration approach. IEEE Trans Neural Netw Learn Syst, 2022, 33: 2781–2790

    Article  MathSciNet  Google Scholar 

  31. Jiang Y, Jiang Z P. Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics. Automatica, 2012, 48: 2699–2704

    Article  MathSciNet  MATH  Google Scholar 

  32. Sontag E D. Input to state stability: basic concepts and results. In: Nonlinear and Optimal Control Theory. Berlin: Springer-Verlag, 2007. 163–220

    Google Scholar 

  33. Khalil H K. Nonlinear Systems. 3rd ed. Upper Saddle River: Prentice Hall PTR, 2002

    MATH  Google Scholar 

Download references

Acknowledgements

The work was supported in part by Science and Technology Major Project 2020 of Liaoning Province (Grant No. 2020JH1/10100008), National Natural Science Foundation of China (Grant Nos. 61991404, 61991400), 111 Project 2.0 (Grant No. B08015), and U.S. National Science Foundation (Grant No. CNS-2227153).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weinan Gao or Zhong-Ping Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Jiang, ZP. Data-driven cooperative output regulation of multi-agent systems under distributed denial of service attacks. Sci. China Inf. Sci. 66, 190201 (2023). https://doi.org/10.1007/s11432-022-3702-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3702-4

Keywords

Navigation