Skip to main content
Log in

Boosted high-temperature electrical characteristics of AlGaN/GaN HEMTs with rationally designed compositionally graded AlGaN back barriers

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Wide bandgap GaN-based HEMTs have shown great potential as key components in various power electronic systems but still face challenges in the pursuit of devices with stable operation capability especially in harsh environments. Here, we report a high-performance double heterojunction (DH) based AlGaN/GaN HEMT by incorporating a decreasing-Al-composition (DAC) graded AlGaN back barrier (BB) beneath the GaN channel. Thanks to the improved electron confinement enabled by graded BB, the DHHEMT exhibits significantly improved on-state drain current density and off-state breakdown voltage compared with a single heterojunction (SH) based HEMT. More intriguingly, with an additional SiNx passivation layer, the surface states of the DH-HEMTs can be effectively suppressed, leading to an almost constant off-state leakage current and negligible gate contact degradation across the temperature range from 25° C to 150° C. These results highlight the superiority and reliability of the proposed graded AlGaN BB to boost device characteristics for applications under high temperatures and harsh conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang H, Huang C, Song K, et al. Compositionally graded III-nitride alloys: building blocks for efficient ultraviolet optoelectronics and power electronics. Rep Prog Phys, 2021, 84: 044401

    Article  Google Scholar 

  2. Huang C, Zhang H, Sun H. Ultraviolet optoelectronic devices based on AlGaN-SiC platform: towards monolithic photonics integration system. Nano Energy, 2020, 77: 105149

    Article  Google Scholar 

  3. Zhong Y, Zhang J, Wu S, et al. A review on the GaN-on-Si power electronic devices. Fundamental Res, 2022, 2: 462–475

    Article  Google Scholar 

  4. Sun Y, Zhang H, Yang L, et al. Correlation between electrical performance and gate width of GaN-based HEMTs. IEEE Electron Dev Lett, 2022, 43: 1199–1202

    Article  Google Scholar 

  5. Zhang H, Sun Y, Song K, et al. Demonstration of AlGaN/GaN HEMTs on vicinal sapphire substrates with large misoriented angles. Appl Phys Lett, 2021, 119: 072104

    Article  Google Scholar 

  6. Zhang H, Liang F, Song K, et al. Demonstration of AlGaN/GaN-based ultraviolet phototransistor with a record high responsivity over 3.6 × 107 A/W. Appl Phys Lett, 2021, 118: 242105

    Article  Google Scholar 

  7. Nela L, Ma J, Erine C, et al. Multi-channel nanowire devices for efficient power conversion. Nat Electron, 2021, 4: 284–290

    Article  Google Scholar 

  8. Yang J Y, Yeom M J, Lee J, et al. Reconfigurable radio-frequency high-electron mobility transistors via ferroelectric-based gallium nitride heterostructure. Adv Elect Mater, 2022, 8: 2101406

    Article  Google Scholar 

  9. Zhou F, Xu W, Ren F, et al. 1.2 kV/25 A normally off P-N junction/AlGaN/GaN HEMTs with nanosecond switching characteristics and robust overvoltage capability. IEEE Trans Power Electron, 2022, 37: 26–30

    Article  Google Scholar 

  10. Nela L, Xiao M, Zhang Y, et al. A perspective on multi-channel technology for the next-generation of GaN power devices. Appl Phys Lett, 2022, 120: 190501

    Article  Google Scholar 

  11. Cui P, Jia M, Chen H, et al. InAlN/GaN HEMT on Si with fmax = 270 GHz. IEEE Trans Electron Dev, 2021, 68: 994–999

    Article  Google Scholar 

  12. Yang L, Hou B, Jia F, et al. The DC performance and RF characteristics of GaN-based HEMTs improvement using graded AlGaN back barrier and Fe/C Co-doped buffer. IEEE Trans Electron Dev, 2022, 69: 4170–4174

    Article  Google Scholar 

  13. Yu H, Parvais B, Peralagu U, et al. Back barrier trapping induced resistance dispersion in GaN HEMT: mechanism, modeling, and solutions. In: Proceedings of International Electron Devices Meeting (IEDM), 2022

  14. Lee J H, Lisesivdin S B, Lee J H, et al. High figure-of-merit (V 2BR /RON) AlGaN/GaN power HEMT with periodically C-doped GaN buffer and AlGaN back barrier. IEEE J Electron Dev Soc, 2018, 6: 1179–1186

    Article  Google Scholar 

  15. He L, Li L, Zheng Y, et al. The influence of Al composition in AlGaN back barrier layer on leakage current and dynamic RON characteristics of AlGaN/GaN HEMTs. Phys Status Solidi A, 2017, 214: 1600824

    Article  Google Scholar 

  16. Hamza K H, Nirmal D, Fletcher A S A, et al. Enhanced drain current and cut off frequency in AlGaN/GaN HEMT with BGaN back barrier. Mater Sci Eng-B, 2022, 284: 115863

    Article  Google Scholar 

  17. Zhang Y, Guo R, Xu S, et al. High-performance high electron mobility transistors with GaN/InGaN composite channel and superlattice back barrier. Appl Phys Lett, 2019, 115: 072105

    Article  Google Scholar 

  18. Kim J G, Kang S H, Janicki L, et al. Growth of AlGaN/GaN heterostructure with lattice-matched AlIn(Ga)N back barrier. Solid-State Electron, 2019, 152: 24–28

    Article  Google Scholar 

  19. Malmros A, Gamarra P, Thorsell M, et al. Impact of channel thickness on the large-signal performance in InAlGaN/AlN/GaN HEMTs with an AlGaN back barrier. IEEE Trans Electron Dev, 2018, 66: 364–371

    Article  Google Scholar 

  20. Han T, Zhao H, Han L, et al. Investigation into the carrier distribution and energy-band profile in AlGaN/GaN heterostructures with a graded AlGaN buffer. Semicond Sci Technol, 2018, 33: 115018

    Article  Google Scholar 

  21. Hájek F, Hospodková A, Hubík P, et al. Transport properties of AlGaN/GaN HEMT structures with back barrier: impact of dislocation density and improved design. Semicond Sci Technol, 2021, 36: 075016

    Article  Google Scholar 

  22. Liu X, Wang H Y, Chiu H C, et al. Analysis of the back-barrier effect in AlGaN/GaN high electron mobility transistor on free-standing GaN substrates. J Alloys Compd, 2020, 814: 152293

    Article  Google Scholar 

  23. Zhang W, Li X, Zhang J, et al. Overcoming the poor crystal quality and DC characteristics of AlGaN/GaN/AlGaN double-heterostructure high electron mobility transistors. Phys Status Solidi A, 2016, 213: 2203–2207

    Article  Google Scholar 

  24. Wang J, You H, Guo H, et al. Do all screw dislocations cause leakage in GaN-based devices? Appl Phys Lett, 2020, 116: 062104

    Article  Google Scholar 

  25. Besendörfer S, Meissner E, Medjdoub F, et al. The impact of dislocations on AlGaN/GaN Schottky diodes and on gate failure of high electron mobility transistors. Sci Rep, 2020, 10: 17252

    Article  Google Scholar 

  26. Divya P, Kumar A, Lee W H. Effects of SiNX passivation on GaN-HEMT DC characteristics. Mater Sci Semicond Process, 2022, 148: 106716

    Article  Google Scholar 

  27. Lv Y, Lin Z, Corrigan T D, et al. Extraction of AlGaN/GaN heterostructure Schottky diode barrier heights from forward current-voltage characteristics. J Appl Phys, 2011, 109: 074512

    Article  Google Scholar 

  28. Vertiatchikh A V, Eastman L F. Effect of the surface and barrier defects on the AlGaN/GaN HEMT low-frequency noise performance. IEEE Electron Dev Lett, 2003, 24: 535–537

    Article  Google Scholar 

  29. Lu H, Yang L, Hou B, et al. AlN/GaN/InGaN coupling-channel HEMTs with steep subthreshold swing of sub-60 mV/decade. Appl Phys Lett, 2022, 120: 173502

    Article  Google Scholar 

  30. Song W, Li Y, Zhang K, et al. Steep subthreshold swing in GaN negative capacitance field-effect transistors. IEEE Trans Electron Dev, 2019, 66: 4148–4150

    Article  Google Scholar 

  31. Liu X, Gu H, Li K, et al. AlGaN/GaN high electron mobility transistors with a low sub-threshold swing on free-standing GaN wafer. AIP Adv, 2017, 7: 095305

    Article  Google Scholar 

  32. Lu X, Ma J, Jiang H, et al. Low trap states in in situ SiNx/AlN/GaN metal-insulator-semiconductor structures grown by metal-organic chemical vapor deposition. Appl Phys Lett, 2014, 105: 102911

    Article  Google Scholar 

  33. Goswami A, Trew R J, Bilbro G L. Modeling of the gate leakage current in AlGaN/GaN HFETs. IEEE Trans Electron Dev, 2014, 61: 1014–1021

    Article  Google Scholar 

  34. Mukherjee J, Chaubey R K, Rawal D S, et al. Analysis of the post-stress recovery of reverse leakage current in GaN HEMTs. Mater Sci Semicond Process, 2022, 137: 106222

    Article  Google Scholar 

  35. Fang T, Wang R, Xing H, et al. Effect of optical phonon scattering on the performance of GaN transistors. IEEE Electron Dev Lett, 2012, 33: 709–711

    Article  Google Scholar 

  36. Xu N, Hao R, Chen F, et al. Gate leakage mechanisms in normally off p-GaN/AlGaN/GaN high electron mobility transistors. Appl Phys Lett, 2018, 113: 152104

    Article  Google Scholar 

  37. Chen Y H, Zhang K, Cao M Y, et al. Study of surface leakage current of AlGaN/GaN high electron mobility transistors. Appl Phys Lett, 2014, 104: 153509

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 52161145404, 61905236, 51961145110), Fundamental Research Funds for the Central Universities (Grant Nos. WK3500000009, WK2100230020), Students’ Innovation and Entrepreneurship Foundation of USTC (Grant No. CY2022X04), and partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiding Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Sun, Y., Hu, K. et al. Boosted high-temperature electrical characteristics of AlGaN/GaN HEMTs with rationally designed compositionally graded AlGaN back barriers. Sci. China Inf. Sci. 66, 182405 (2023). https://doi.org/10.1007/s11432-022-3694-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3694-4

Keywords

Navigation