Skip to main content
Log in

A low-floor bit-mapping scheme for LDPC coded BICM for 5G and beyond systems

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper proposes a low-floor bit-mapping (LFBM) scheme for bit-interleaved coded modulation (BICM) systems to meet more stringent quality of service requirements of 5G and beyond. For high-efficiency transmissions, we consider the 5G low-density parity-check codes with high-order 2m-quadrature amplitude modulations (QAMs). The proposed LFBM scheme overcomes plenty of trapping sets induced by the bit interleaver, which focuses on the waterfall performance too aggressively. When the high-order QAM is used, the row-column interleaver specified by the 5G standard is such a bit interleaver. The LFBM scheme only optimizes the rule of mapping an m-bit tuple output by the row-column interleaver to a modulation symbol, rather than the entire bit interleaver. Therefore, the optimized bit mapper is actually an m-bit permutation module concatenated with the original bit interleaver employed in the current 5G BICM systems. The simulation results confirm that the LFBM scheme can lower the error floor of the 5G BICM system by approximately two orders of magnitude, while with negligible performance loss in the waterfall region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gallager R. Low-density parity-check codes. IEEE Trans Inform Theory, 1962, 8: 21–28

    Article  MathSciNet  MATH  Google Scholar 

  2. Thorpe J. Low Density Parity Check (LDPC) Codes Constructed from Protographs. JPL INP Progress Report. 2003

  3. Divsalar D, Dolinar S, Jones C. Low-rate LDPC codes with simple protograph structure. In: Proceedings of IEEE International Symposium on Information Theory, 2005. 1622–1626

  4. Chen T Y, Vakilinia K, Divsalar D, et al. Protograph-based raptor-like LDPC codes. IEEE Trans Commun, 2015, 63: 1522–1532

    Article  Google Scholar 

  5. 3GPP. The 3rd Generation Partnership Project; Technical specification group radio access network; NR; Multiplexing and channel coding (Release 15). 3GPP TS 38.212 V15.6.0. 2019. https://www.3gpp.org/ftp/Specs/archive/38_series/38.212

  6. You X H, Wang C X, Huang J, et al. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Sci China Inf Sci, 2021, 64: 110301

    Article  Google Scholar 

  7. Feng D Q, Lai L F, Luo J J, et al. Ultra-reliable and low-latency communications: applications, opportunities and challenges. Sci China Inf Sci, 2021, 64: 120301

    Article  Google Scholar 

  8. Naik G, Choudhury B, Park J M. IEEE 802.11bd & 5G NR V2X: evolution of radio access technologies for V2X communications. IEEE Access, 2019, 7: 70169–70184

    Article  Google Scholar 

  9. Richardson T. Error floors of LDPC codes. In: Proceedings of the 41st Annual Allerton Conference, Monticello, 2003. 1426–1435

  10. Karimi M, Banihashemi A H. Efficient algorithm for finding dominant trapping sets of LDPC codes. IEEE Trans Inform Theory, 2012, 58: 6942–6958

    Article  MathSciNet  MATH  Google Scholar 

  11. Dolecek L, Lee P, Zhang Z Y, et al. Predicting error floors of structured LDPC codes: deterministic bounds and estimates. IEEE J Sel Areas Commun, 2009, 27: 908–917

    Article  Google Scholar 

  12. Farsiabi A, Banihashemi A H. Error floor analysis of LDPC row layered decoders. IEEE Trans Inform Theory, 2021, 67: 5804–5826

    Article  MathSciNet  MATH  Google Scholar 

  13. Hashemi Y, Banihashemi A H. New characterization and efficient exhaustive search algorithm for leafless elementary trapping sets of variable-regular LDPC codes. IEEE Trans Inform Theory, 2016, 62: 6713–6736

    Article  MathSciNet  MATH  Google Scholar 

  14. Hashemi Y, Banihashemi A H. Characterization of elementary trapping sets in irregular LDPC codes and the corresponding efficient exhaustive search algorithms. IEEE Trans Inform Theory, 2018, 64: 3411–3430

    Article  MathSciNet  MATH  Google Scholar 

  15. Han Y, Ryan W E. Low-floor decoders for LDPC codes. IEEE Trans Commun, 2009, 57: 1663–1673

    Article  Google Scholar 

  16. Caire G, Taricco G, Biglieri E. Bit-interleaved coded modulation. IEEE Trans Inform Theory, 1998, 44: 927–946

    Article  MathSciNet  MATH  Google Scholar 

  17. Liao Y, Qiu M, Yuan J H. Design and analysis of delayed bit-interleaved coded modulation with LDPC codes. IEEE Trans Commun, 2021, 69: 3556–3571

    Article  Google Scholar 

  18. Zhu M Y, Jiang M, Zhao C M. Error floor estimation of QC-LDPC coded modulation with importance sampling. IEEE Commun Lett, 2021, 25: 28–32

    Article  Google Scholar 

  19. Wachsmann U, Fischer R F H, Huber J B. Multilevel codes: theoretical concepts and practical design rules. IEEE Trans Inform Theory, 1999, 45: 1361–1391

    Article  MathSciNet  MATH  Google Scholar 

  20. Divsalar D, Jones C. Protograph based low error floor LDPC coded modulation. In: Proceedings of IEEE Military Communications Conference, 2005. 378–385

  21. Tang C J, Shen H, Jiang M, et al. Optimization of generalized VDMM for protograph-based LDPC coded BICM. IEEE Commun Lett, 2014, 18: 853–856

    Article  Google Scholar 

  22. Jin Y, Jiang M, Zhao C M. Optimized variable degree matched mapping for protograph LDPC coded modulation with 16QAM. In: Proceedings of IEEE ISTC, 2010. 161–165

  23. Otarinia M, Fuja T E. The 5G new radio code: elementary absorbing sets and error floor performance. In: Proceedings of International Symposium on Information Theory and Its Applications, Kapolei, 2020. 215–219

  24. He H, Jiang M, Zhu M Y, et al. Lowering the error floor of quantized NR LDPC decoders by a post-processing on trapping sets. In: Proceedings of International Conference on Wireless Communications and Signal Processing, Changsha, 2021. 1–5

  25. Richardson T, Kudekar S. Design of low-density parity check codes for 5G new radio. IEEE Commun Mag, 2018, 56: 28–34

    Article  Google Scholar 

  26. 3GPP. The 3rd Generation Partnership Project; Technical specification group radio access network; NR; Physical channels and modulation (Release 15). 3GPP TS 38.211 V15.6.0. 2019. https://www.3gpp.org/ftp/Specs/archive/38_series/38.211

  27. Liva G, Chiani M. Protograph LDPC codes design based on EXIT analysis. In: Proceedings of IEEE GLOBECOM, Washington, 2007. 3250–3254

  28. Steiner F, Bocherer G, Liva G. Protograph-based LDPC code design for shaped bit-metric decoding. IEEE J Sel Areas Commun, 2016, 34: 397–407

    Article  Google Scholar 

  29. Brink S T, Kramer G, Ashikhmin A. Design of low-density parity-check codes for modulation and detection. IEEE Trans Commun, 2004, 52: 670–678

    Article  Google Scholar 

  30. Chen J H, Fossorier M P C. Near optimum universal belief propagation based decoding of low-density parity check codes. IEEE Trans Commun, 2002, 50: 406–414

    Article  Google Scholar 

  31. Ranganathan S V S, Divsalar D, Wesel R D. Quasi-cyclic protograph-based raptor-like LDPC codes for short block-lengths. IEEE Trans Inform Theory, 2019, 65: 3758–3777

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (Grant No. 2018YFB1801103), Jiangsu Province Basic Research Project (Grant No. BK20192002), and Southeast University China Mobile Research Institute Joint Innovation Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Jiang, M., Zhao, C. et al. A low-floor bit-mapping scheme for LDPC coded BICM for 5G and beyond systems. Sci. China Inf. Sci. 66, 202301 (2023). https://doi.org/10.1007/s11432-022-3670-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3670-5

Keywords

Navigation