Skip to main content
Log in

Low-loss, dual-polarization asymmetric Mach-Zehnder interferometer chips for quantum key distribution

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

We have developed the first low-loss, dual-polarization, asymmetric Mach-Zehnder interferometer (AMZI) chip for phase-coding quantum key distribution (QKD) using silica planar lightwave circuit technology. The transmitter and receiver modules have a polarization extinction ratio greater than 20 and 15 dB, respectively. Using a birefringent Mach-Zehnder interferometer, a polarization beam splitter is integrated into the receiver chip, while the polarization rotation function is obtained via a half-wave plate thin film. The receiver chip is entirely passive and has an excellent fiber C fiber loss of 1.90 dB, while the transmitter’s AMZI contains thermo-optical electrodes for adjusting the output pulses’ relative phase and intensity ratio. The chips are evaluated to have an interference visibility of greater than 98% across a broad temperature range, demonstrating their suitability for quantum key distribution applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bennett C H, Bessette F, Brassard G, et al. Experimental quantum cryptography. J Cryptology, 1992, 5: 3–28

    Article  MATH  Google Scholar 

  2. Yuan Z, Murakami A, Kujiraoka M, et al. 10-Mb/s quantum key distribution. J Lightwave Technol, 2018, 36: 3427–3433

    Article  Google Scholar 

  3. Boaron A, Boso G, Rusca D, et al. Secure quantum key distribution over 421 km of optical fiber. Phys Rev Lett, 2018, 121: 190502

    Article  Google Scholar 

  4. Lucamarini M, Yuan Z L, Dynes J F, et al. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature, 2018, 557: 400–403

    Article  Google Scholar 

  5. Wang S, Yin Z Q, He D Y, et al. Twin-field quantum key distribution over 830-km fibre. Nat Photon, 2022, 16: 154–161

    Article  Google Scholar 

  6. Sibson P, Kennard J E, Stanisic S, et al. Integrated silicon photonics for high-speed quantum key distribution. Optica, 2017, 4: 172–177

    Article  Google Scholar 

  7. Sibson P, Erven C, Godfrey M, et al. Chip-based quantum key distribution. Nat Commun, 2017, 8: 13984

    Article  Google Scholar 

  8. Wang J, Sciarrino F, Laing A, et al. Integrated photonic quantum technologies. Nat Photon, 2020, 14: 273–284

    Article  Google Scholar 

  9. Paraïso T K, Roger T, Marangon D G, et al. A photonic integrated quantum secure communication system. Nat Photon, 2021, 15: 850–856

    Article  Google Scholar 

  10. Semenenko H, Sibson P, Hart A, et al. Chip-based measurement-device-independent quantum key distribution. Optica, 2020, 7: 238–242

    Article  Google Scholar 

  11. Paraïso T K, De Marco I, Roger T, et al. A modulator-free quantum key distribution transmitter chip. npj Quantum Inf, 2019, 5: 42

    Article  Google Scholar 

  12. Geng W, Zhang C, Zheng Y, et al. Stable quantum key distribution using a silicon photonic transceiver. Opt Express, 2019, 27: 29045–29054

    Article  Google Scholar 

  13. Cao L, Luo W, Wang Y X, et al. Chip-based measurement-device-independent quantum key distribution using integrated silicon photonic systems. Phys Rev Appl, 2020, 14: 011001

    Article  Google Scholar 

  14. Ren M, Li X, Zhang J, et al. Single-photon interference using silica-based AMZI with phase modulation. Opt Laser Tech, 2020, 122: 105837

    Article  Google Scholar 

  15. Li X, Ren M, Zhang J, et al. Interference at the single-photon level based on silica photonics robust against channel disturbance. Photon Res, 2021, 9: 222–228

    Article  Google Scholar 

  16. Zhang G W, Ding Y Y, Chen W, et al. Polarization-insensitive interferometer based on a hybrid integrated planar light-wave circuit. Photon Res, 2021, 9: 2176–2181

    Article  Google Scholar 

  17. Marand C, Townsend P D. Quantum key distribution over distances as long as 30 km. Opt Lett, 1995, 20: 1695–1697

    Article  Google Scholar 

  18. Martinez A, Fröhlich B, Dynes J F, et al. Quantum key distribution using in-line highly birefringent interferometers. Appl Phys Lett, 2018, 113: 031107

    Article  Google Scholar 

  19. Xu H, Shi Y. Ultra-broadband silicon polarization splitter-rotator based on the multi-mode waveguide. Opt Express, 2017, 25: 18485–18491

    Article  Google Scholar 

  20. Dai D, Wu H. Realization of a compact polarization splitter-rotator on silicon. Opt Lett, 2016, 41: 2346–2349

    Article  Google Scholar 

  21. Hashizume Y, Goh T, Inoue Y, et al. Polarization beam splitter with different core widths and its application to dual-polarization optical hybrid. J Lightwave Technol, 2015, 33: 408–414

    Article  Google Scholar 

  22. Samadian P, Hall T J. Performance analysis of polarization transformation waveguide structures for planar light circuits. Opt Quant Electron, 2016, 48: 96

    Article  Google Scholar 

  23. Lim C C W, Curty M, Walenta N, et al. Concise security bounds for practical decoy-state quantum key distribution. Phys Rev A, 2014, 89: 022307

    Article  Google Scholar 

  24. Deng X, Yan L, Jiang H, et al. Polarization-insensitive and broadband optical power splitter with a tunable power splitting ratio. IEEE Photon J, 2017, 9: 1–9

    Google Scholar 

  25. Wang Y, Gao S, Wang K, et al. Ultra-broadband and low-loss 3 dB optical power splitter based on adiabatic tapered silicon waveguides. Opt Lett, 2016, 41: 2053–2056

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meizhen Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, M., Zhou, L. & Yuan, Z. Low-loss, dual-polarization asymmetric Mach-Zehnder interferometer chips for quantum key distribution. Sci. China Inf. Sci. 66, 180503 (2023). https://doi.org/10.1007/s11432-022-3641-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3641-x

Keywords

Navigation