Skip to main content
Log in

Fixed-time stabilization of discontinuous spatiotemporal neural networks with time-varying coefficients via aperiodically switching control

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper focuses on the challenge of fixed-time control for spatiotemporal neural networks (SNNs) with discontinuous activations and time-varying coefficients. A novel fixed-time convergence lemma is proposed, which facilitates the handling of time-varying coefficients of SNNs and relaxes the restriction on the non-positive definiteness of the derivative of the Lyapunov function. Besides, a more flexible and economical aperiodically switching control technique is presented to stabilize SNNs within a fixed time, effectively reducing the amount of information transmission and control costs. Under the newly established fixed-time convergence lemma and aperiodically switching controller, many more general algebraic conditions are deduced to ensure the fixed-time stabilization of SNNs. Numerical examples are provided to manifest the validity of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alharthi M R, Marchant T R, Nelson M I. Mixed quadratic-cubic autocatalytic reaction-diffusion equations: semi-analytical solutions. Appl Math Model, 2014, 38: 5160–5173

    Article  MathSciNet  MATH  Google Scholar 

  2. Alfifi H Y. Semi-analytical solutions for the delayed and diffusive viral infection model with logistic growth. J Nonlinear Sci Appl, 2019, 12: 589–601

    Article  MathSciNet  Google Scholar 

  3. Noufaey K S A, Marchant T R, Edwards M P. The diffusive Lotka-Volterra predator-prey system with delay. Math Biosci, 2015, 270: 30–40

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhang R, Zeng D, Park J H, et al. Fuzzy adaptive event-triggered sampled-data control for stabilization of T-S fuzzy memristive neural networks with reaction-diffusion terms. IEEE Trans Fuzzy Syst, 2020, 29: 1775–1785

    Article  Google Scholar 

  5. Yang C D, Cao J D, Huang T W, et al. Guaranteed cost boundary control for cluster synchronization of complex spatiotemporal dynamical networks with community structure. Sci China Inf Sci, 2018, 61: 052203

    Article  MathSciNet  Google Scholar 

  6. Liao X, Fu Y, Gao J, et al. Stability of Hopfield neural networks with reaction-diffusion terms (in Chinese). Acta Electronica Sin, 2000, 28: 78–80

    Google Scholar 

  7. Chen W H, Luo S, Zheng W X. Impulsive synchronization of reaction-diffusion neural networks with mixed delays and its application to image encryption. IEEE Trans Neural Netw Learn Syst, 2016, 27: 2696–2710

    Article  Google Scholar 

  8. Wei T, Lin P, Wang Y, et al. Stability of stochastic impulsive reaction-diffusion neural networks with S-type distributed delays and its application to image encryption. Neural Networks, 2019, 116: 35–45

    Article  MATH  Google Scholar 

  9. Wang L, Zeng Z, Ge M F. A disturbance rejection framework for finite-time and fixed-time stabilization of delayed memristive neural networks. IEEE Trans Syst Man Cybern Syst, 2021, 51: 905–915

    Article  Google Scholar 

  10. Wang J, Wang X, Xie N, et al. Fuzzy-model-based \(\cal{H}_{\infty}\) pinning synchronization for coupled neural networks subject to reaction-diffusion. IEEE Trans Fuzzy Syst, 2020, 30: 248–257

    Article  Google Scholar 

  11. Zhang H, Zeng Z. Adaptive synchronization of reaction-diffusion neural networks with nondifferentiable delay via state coupling and spatial coupling. IEEE Trans Neural Netw Learn Syst, 2022. doi: https://doi.org/10.1109/TNNLS.2022.3144222

  12. Zhang H, Zeng Z. Stability and synchronization of nonautonomous reaction-diffusion neural networks with general time-varying delays. IEEE Trans Neural Netw Learn Syst, 2022, 33: 5804–5817

    Article  MathSciNet  Google Scholar 

  13. Yang X, Cao J. Exponential synchronization of delayed neural networks with discontinuous activations. IEEE Trans Circuits Syst I, 2013, 60: 2431–2439

    Article  MathSciNet  MATH  Google Scholar 

  14. Forti M, Nistri P. Global convergence of neural networks with discontinuous neuron activations. IEEE Trans Circuits Syst I, 2003, 50: 1421–1435

    Article  MathSciNet  MATH  Google Scholar 

  15. Hu C, Yu J, Chen Z, et al. Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks. Neural Networks, 2017, 89: 74–83

    Article  MATH  Google Scholar 

  16. Forti M, Nistri P, Papini D. Global exponential stability and global convergence in finite time of delayed neural networks with infinite gain. IEEE Trans Neural Netw, 2005, 16: 1449–1463

    Article  Google Scholar 

  17. Hong H F, Wang H, Wang Z L, et al. Finite-time and fixed-time consensus problems for second-order multi-agent systems with reduced state information. Sci China Inf Sci, 2019, 62: 212201

    Article  MathSciNet  Google Scholar 

  18. Zhang L J, Xia Y Q, Shen G H, et al. Fixed-time attitude tracking control for spacecraft based on a fixed-time extended state observer. Sci China Inf Sci, 2021, 64: 212201

    Article  MathSciNet  Google Scholar 

  19. Xie X, Zhou Q, Yue D, et al. Relaxed control design of discrete-time Takagi-Sugeno fuzzy systems: an event-triggered real-time scheduling approach. IEEE Trans Syst Man Cybern Syst, 2017, 48: 2251–2262

    Article  Google Scholar 

  20. Li H, Wang L, Lai Q. Synchronization of a memristor chaotic system and image encryption. Int J Bifurcation Chaos, 2021, 31: 2150251

    Article  MathSciNet  MATH  Google Scholar 

  21. Song X, Man J, Ahn C K, et al. Synchronization in finite/fixed time for Markovian complex-valued nonlinear interconnected neural networks with reaction-diffusion terms. IEEE Trans Netw Sci Eng, 2021, 8: 3313–3324

    Article  Google Scholar 

  22. Wei R, Cao J, Kurths J. Fixed-time output synchronization of coupled reaction-diffusion neural networks with delayed output couplings. IEEE Trans Netw Sci Eng, 2021, 8: 780–789

    Article  MathSciNet  Google Scholar 

  23. Wang Z, Cao J, Cai Z, et al. Anti-synchronization in fixed time for discontinuous reaction-diffusion neural networks with time-varying coefficients and time delay. IEEE Trans Cybern, 2019, 50: 2758–2769

    Article  Google Scholar 

  24. Liu B, Yang M, Liu T, et al. Stabilization to exponential input-to-state stability via aperiodic intermittent control. IEEE Trans Automat Contr, 2020, 66: 2913–2919

    Article  MathSciNet  MATH  Google Scholar 

  25. Tang R, Su H, Zou Y, et al. Finite-time synchronization of Markovian coupled neural networks with delays via intermittent quantized control: linear programming approach. IEEE Trans Neural Netw Learn Syst, 2022, 33: 5268–5278

    Article  MathSciNet  Google Scholar 

  26. Gan Q, Xiao F, Sheng H. Fixed-time outer synchronization of hybrid-coupled delayed complex networks via periodically semi-intermittent control. J Franklin Institute, 2019, 356: 6656–6677

    Article  MathSciNet  MATH  Google Scholar 

  27. Cheng L, Tang F, Shi X, et al. Finite-time and fixed-time synchronization of delayed memristive neural networks via adaptive aperiodically intermittent adjustment strategy. IEEE Trans Neural Netw Learn Syst, 2022. doi: https://doi.org/10.1109/TNNLS.2022.3151478

  28. Mei J, Jiang M H, Wang X H, et al. Finite-time synchronization of drive-response systems via periodically intermittent adaptive control. J Franklin Institute, 2014, 351: 2691–2710

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang S, Yang Y, Sui X, et al. Finite-time synchronization of memristive neural networks with parameter uncertainties via aperiodically intermittent adjustment. Phys A-Stat Mech its Appl, 2019, 534: 122258

    Article  MathSciNet  MATH  Google Scholar 

  30. Cai Z, Huang L, Wang Z. Finite-/fixed-time stability of nonautonomous functional differential inclusion: Lyapunov approach involving indefinite derivative. IEEE Trans Neural Netw Learn Syst, 2022, 33: 6763–6774

    Article  MathSciNet  Google Scholar 

  31. Song X, Man J, Song S, et al. Finite/fixed-time anti-synchronization of inconsistent markovian quaternion-valued memristive neural networks with reaction-diffusion terms. IEEE Trans Circuits Syst I, 2020, 68: 363–375

    Article  MathSciNet  Google Scholar 

  32. Wang Z, Cao J, Lu G, et al. Fixed-time passification analysis of interconnected memristive reaction-diffusion neural networks. IEEE Trans Netw Sci Eng, 2019, 7: 1814–1824

    Article  MathSciNet  Google Scholar 

  33. Wang J L, Zhang X X, Wu H N, et al. Finite-time passivity and synchronization of coupled reaction-diffusion neural networks with multiple weights. IEEE Trans Cybern, 2018, 49: 3385–3397

    Article  Google Scholar 

  34. Qiu Q, Su H. Finite-time output synchronization for output-coupled reaction-diffusion neural networks with directed topology. IEEE Trans Netw Sci Eng, 2022, 9: 1386–1394

    Article  MathSciNet  Google Scholar 

  35. Wang L, He H, Zeng Z. Global synchronization of fuzzy memristive neural networks with discrete and distributed delays. IEEE Trans Fuzzy Syst, 2020, 28: 2022–2034

    Article  Google Scholar 

  36. Shanmugam L, Mani P, Rajan R, et al. Adaptive synchronization of reaction-diffusion neural networks and its application to secure communication. IEEE Trans Cybern, 2018, 50: 911–922

    Article  Google Scholar 

  37. Ma Q, Feng G, Xu S. Delay-dependent stability criteria for reaction-diffusion neural networks with time-varying delays. IEEE Trans Cybern, 2013, 43: 1913–1920

    Article  Google Scholar 

  38. Qiu Q, Su H. Sampling-based event-triggered exponential synchronization for reaction-diffusion neural networks. IEEE Trans Neural Netw Learn Syst, 2023, 34: 1209–1217

    Article  MathSciNet  Google Scholar 

  39. Zhang R, Zeng D, Park J H, et al. Adaptive event-triggered synchronization of reaction-diffusion neural networks. IEEE Trans Neural Netw Learn Syst, 2020, 32: 3723–3735

    Article  MathSciNet  Google Scholar 

  40. Allegretto W, Papini D. Stability for delayed reaction-diffusion neural networks. Phys Lett A, 2007, 360: 669–680

    Article  MathSciNet  MATH  Google Scholar 

  41. Frigon M. On a critical point theory for multivalued functionals and application to partial differential inclusions. Nonlinear Anal-Theor Methods Appl, 1998, 31: 735–753

    Article  MathSciNet  MATH  Google Scholar 

  42. Hu C, Jiang H J, Teng Z D. Impulsive control and synchronization for delayed neural networks with reaction-diffusion terms. IEEE Trans Neural Netw, 2010, 21: 67–81

    Article  Google Scholar 

  43. Forti M, Grazzini M, Nistri P, et al. Generalized Lyapunov approach for convergence of neural networks with discontinuous or non-Lipschitz activations. Phys D-Nonlinear Phenom, 2006, 214: 88–99

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang L, Zeng K, Hu C, et al. Multiple finite-time synchronization of delayed inertial neural networks via a unified control scheme. Knowledge-Based Syst, 2022, 236: 107785

    Article  Google Scholar 

  45. Cai Z, Huang L. Generalized Lyapunov approach for functional differential inclusions. Automatica, 2020, 113: 10874

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 62076229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leimin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Wang, L., Zhang, CK. et al. Fixed-time stabilization of discontinuous spatiotemporal neural networks with time-varying coefficients via aperiodically switching control. Sci. China Inf. Sci. 66, 152204 (2023). https://doi.org/10.1007/s11432-022-3633-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3633-9

Keywords

Navigation