Skip to main content
Log in

Detecting coherence with respect to general quantum measurements

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Quantum coherence is crucial in quantum resource theory. Previous studies have mainly focused on standard coherence based on a complete orthogonal reference. Standard coherence has recently been extended to general positive-operator-valued measure (POVM)-based coherence, including block coherence as a special case. Therefore, it is necessary to construct block and POVM-based coherence witnesses to detect them. In this study, we present witnesses for block and POVM-based coherence and obtain the necessary and sufficient conditions for constructing these witnesses. We also discuss possible realizations of some block and POVM-based coherence witnesses in experiments and present examples of measuring block coherence witnesses based on real experimental data. Furthermore, we present an application of block coherence witnesses in a quantum-parameter estimation task with a degenerate Hamiltonian and estimate the unknown parameter by measuring the block coherence witnesses when the input state is block coherent. Finally, we prove that the quantum Fisher information of any block-incoherent state equals zero, which coincides with the result obtained from measuring block coherence witnesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Huelga S F, Plenio M B. Vibrations, quanta and biology. Contemp Phys, 2013, 54: 181–207

    Article  Google Scholar 

  2. Brandão F G S L, Plenio M B. Entanglement theory and the second law of thermodynamics. Nat Phys, 2008, 4: 873–877

    Article  Google Scholar 

  3. Brandão F G S L, Plenio M B. A reversible theory of entanglement and its relation to the second law. Commun Math Phys, 2010, 295: 829–851

    Article  MathSciNet  MATH  Google Scholar 

  4. Horodecki M, Oppenheim J. (Quantumness in the context of) resource theories. Int J Mod Phys B, 2013, 27: 1345019

    Article  MathSciNet  MATH  Google Scholar 

  5. Dai Y, Dong Y, Xu Z, et al. Experimentally accessible lower bounds for genuine multipartite entanglement and coherence measures. Phys Rev Appl, 2020, 13: 054022

    Article  Google Scholar 

  6. Plenio M B, Virmani S S. An introduction to entanglement theory. In: Quantum Information and Coherence. Cham: Springer, 2014

    Google Scholar 

  7. Zhang D J, Liu C L, Yu X D, et al. Estimating coherence measures from limited experimental data available. Phys Rev Lett, 2018, 120: 170501

    Article  Google Scholar 

  8. Li C M, Lambert N, Chen Y N, et al. Witnessing quantum coherence: from solid-state to biological systems. Sci Rep, 2012, 2: 885

    Article  Google Scholar 

  9. von Prillwitz K, Rudnicki Ł, Mintert F. Contrast in multipath interference and quantum coherence. Phys Rev A, 2015, 92: 052114

    Article  Google Scholar 

  10. Cai J M. Quantum biology: explore quantum dynamics in biological systems. Sci China Inf Sci, 2016, 59: 081302

    Article  Google Scholar 

  11. Su X L, Wang M H, Yan Z H, et al. Quantum network based on non-classical light. Sci China Inf Sci, 2020, 63: 180503

    Article  MathSciNet  Google Scholar 

  12. Ren S Y, Wang Y, Su X L. Hybrid quantum key distribution network. Sci China Inf Sci, 2022, 65: 200502

    Article  MathSciNet  Google Scholar 

  13. Napoli C, Bromley T R, Cianciaruso M, et al. Robustness of coherence: an operational and observable measure of quantum coherence. Phys Rev Lett, 2016, 116: 150502

    Article  Google Scholar 

  14. Baumgratz T, Cramer M, Plenio M B. Quantifying coherence. Phys Rev Lett, 2014, 113: 140401

    Article  Google Scholar 

  15. Aberg J. Quantifying superposition. 2006. ArXiv:quant-ph/0612146

  16. Bischof F, Kampermann H, Bruß D. Resource theory of coherence based on positive-operator-valued measures. Phys Rev Lett, 2019, 123: 110402

    Article  MathSciNet  Google Scholar 

  17. Xu J, Shao L H, Fei S M. Coherence measures with respect to general quantum measurements. Phys Rev A, 2020, 102: 012411

    Article  MathSciNet  Google Scholar 

  18. Xu J, Zhang L, Fei S M. Estimating coherence with respect to general quantum measurements. Quantum Inf Process, 2022, 21: 39

    Article  MathSciNet  MATH  Google Scholar 

  19. Bischof F, Kampermann H, Bruß D. Quantifying coherence with respect to general quantum measurements. Phys Rev A, 2021, 103: 032429

    Article  MathSciNet  Google Scholar 

  20. Kim S, Xiong C, Kumar A, et al. Converting coherence based on positive-operator-valued measures into entanglement. Phys Rev A, 2021, 103: 052418

    Article  MathSciNet  Google Scholar 

  21. Kim S, Xiong C, Kumar A, et al. Quantifying dynamical coherence with coherence measures. Phys Rev A, 2021, 104: 012404

    Article  MathSciNet  Google Scholar 

  22. Ren H, Lin A, He S, et al. Quantitative coherence witness for finite dimensional states. Ann Phys, 2017, 387: 281–289

    Article  MathSciNet  MATH  Google Scholar 

  23. Ma Z, Zhang Z, Dai Y, et al. Detecting and estimating coherence based on coherence witnesses. Phys Rev A, 2021, 103: 012409

    Article  Google Scholar 

  24. Wang B H, Zhou S Q, Ma Z, et al. Tomographic witnessing and holographic quantifying of coherence. Quantum Inf Process, 2021, 20: 181

    Article  MathSciNet  MATH  Google Scholar 

  25. Häffner H, Hänsel W, Roos C F, et al. Scalable multiparticle entanglement of trapped ions. Nature, 2005, 438: 643–646

    Article  Google Scholar 

  26. Giovannetti V, Lloyd S, Maccone L. Quantum metrology. Phys Rev Lett, 2006, 96: 010401

    Article  MathSciNet  Google Scholar 

  27. Dowling J P. Quantum optical metrology — the lowdown on high-N00N states. Contemp Phys, 2008, 49: 125–143

    Article  Google Scholar 

  28. Tóth G, Apellaniz I. Quantum metrology from a quantum information science perspective. J Phys A-Math Theor, 2014, 47: 424006

    Article  MathSciNet  MATH  Google Scholar 

  29. Braunstein S L, Caves C M. Statistical distance and the geometry of quantum states. Phys Rev Lett, 1994, 72: 3439–3443

    Article  MathSciNet  MATH  Google Scholar 

  30. Braunstein S L, Caves C M, Milburn G J. Generalized uncertainty relations: theory, examples, and Lorentz invariance. Ann Phys, 1996, 247: 135–173

    Article  MathSciNet  MATH  Google Scholar 

  31. Paris M G A. Quantum estimation for quantum technology. Int J Quantum Inform, 2009, 07: 125–137

    Article  MATH  Google Scholar 

  32. Giovannetti V, Lloyd S, Maccone L. Advances in quantum metrology. Nat Photon, 2011, 5: 222–229

    Article  Google Scholar 

  33. van den Brink J, Khomskii D. Double exchange via degenerate orbitals. Phys Rev Lett, 1999, 82: 1016–1019

    Article  Google Scholar 

  34. Togawa M, Kühn S, Shah C, et al. Observation of strong two-electron-one-photon transitions in few-electron ions. Phys Rev A, 2020, 102: 052831

    Article  Google Scholar 

  35. Ha H, Yang B J. Macroscopically degenerate localized zero-energy states of quasicrystalline bilayer systems in the strong coupling limit. Phys Rev B, 2021, 104: 165112

    Article  Google Scholar 

  36. Yang J, Huang H. Trapping horizons of the evolving charged wormhole and black bounce. Phys Rev D, 2021, 104: 084005

    Article  MathSciNet  Google Scholar 

  37. Klots A R, Ioffe L B. Set of holonomic and protected gates on topological qubits for a realistic quantum computer. Phys Rev B, 2021, 104: 144502

    Article  Google Scholar 

  38. Schneider M, Ostmeyer J, Jansen K, et al. Simulating both parity sectors of the Hubbard model with tensor networks. Phys Rev B, 2021, 104: 155118

    Article  Google Scholar 

  39. Deppner C, Herr W, Cornelius M, et al. Collective-mode enhanced matter-wave optics. Phys Rev Lett, 2021, 127: 100401

    Article  Google Scholar 

  40. Zhang X X, Manske D, Nagaosa N. Ultrafast excitation and topological soliton formation in incommensurate charge density wave states. Phys Rev B, 2021, 104: 125132

    Article  Google Scholar 

  41. Ge Z, Slizovskiy S, Joucken F, et al. Control of giant topological magnetic moment and valley splitting in trilayer graphene. Phys Rev Lett, 2021, 127: 136402

    Article  Google Scholar 

  42. Corps Á L, Relaño A. Constant of motion identifying excited-state quantum phases. Phys Rev Lett, 2021, 127: 130602

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11734015, 11704205, 12074206), Open Funding Program from State Key Laboratory of Precision Spectroscopy (East China Normal University), and K.C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Zhao Zhang or Cheng-Jie Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YC., Cheng, J., Zhang, WZ. et al. Detecting coherence with respect to general quantum measurements. Sci. China Inf. Sci. 66, 180504 (2023). https://doi.org/10.1007/s11432-022-3620-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3620-2

Keywords

Navigation