Skip to main content
Log in

All-van der Waals stacking ferroelectric field-effect transistor based on In2Se3 for high-density memory

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

High-density integration of ferroelectric field-effect transistors (FeFETs) is hindered by factors such as interfacial states, short-channel effects, and ferroelectricity degradation in ultrathin films. Accordingly, the introduction of two-dimensional (2D) materials could effectively solve these problems. However, most current studies focus on the replacement of Si-based channels with 2D channels. Little progress has been made in addressing issues caused by bulk-phase ferroelectric gate layers, such as the unavoidable rough interfaces and the fading of ferroelectricity in ultrathin films. Herein, the 2D ferroelectric material In2Se3 is introduced as the gate dielectric. Combined with 2D insulating h-BN and 2D channel MoS2, an all-van der Waals (vdW) stacking FeFET is fabricated to provide a straight solution for the abovementioned issues. First, the robust ferroelectric phase of In2 Se3 is verified in an ultrathin film case and a high-temperature case, which is outstanding among recently reported 2D ferroelectrics. Second, device-level out-of-plane ferroelectric polarization switching is achieved in the cross-structure device. Based on these results, In2 Se3 is adopted as the ferroelectric gate dielectric to fabricate all-vdW stacking FeFETs. The subsequent transistor performance measurement on the fabricated FeFETs indicates that the ferroelectric polarization of the In2 Se3 layer plays a dominating role in forming a counterclockwise hysteresis loop. Further pulse response measurements manifest the feasibility of nonvolatile channel conductance tuning of these devices with a proper pulse design. Our findings suggest that In2Se3 is a suitable 2D ferroelectric gate material and that all-vdW stacking FeFETs based on 2D ferroelectrics are promising in the application of high-density memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Chakraborty I, Jaiswal A, Saha A K, et al. Pathways to efficient neuromorphic computing with non-volatile memory technologies. Appl Phys Rev, 2020, 7: 021308

    Article  Google Scholar 

  2. Beyer S, Dünkel S, Trentzsch M, et al. FeFET: a versatile CMOS compatible device with game-changing potential. In: Proceedings of 2020 IEEE International Memory Workshop (IMW), 2020. 1–4

  3. Zhang W, Mazzarello R, Wuttig M, et al. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat Rev Mater, 2019, 4: 150–168

    Article  Google Scholar 

  4. Schenk T, Pesic M, Slesazeck S, et al. Memory technology—a primer for material scientists. Rep Prog Phys, 2020, 83: 086501

    Article  Google Scholar 

  5. Scott J F, Araujo C P D. Ferroelectric memories. Science, 1989, 128: 265–292

    Google Scholar 

  6. Fan Z, Chen J, Wang J. Ferroelectric HfO2-based materials for next-generation ferroelectric memories. J Adv Dielect, 2016, 06: 1630003

    Article  Google Scholar 

  7. Takasu H. The ferroelectric memory and its applications. J Electroceramics, 2000, 4: 327–338

    Article  Google Scholar 

  8. Wang P, Shim W, Wang Z, et al. Drain-erase scheme in ferroelectric field effect transistor-part II: 3-D-NAND architecture for in-memory computing. IEEE Trans Electron Devices, 2020, 67: 962–967

    Article  Google Scholar 

  9. Park M H, Lee Y H, Mikolajick T, et al. Review and perspective on ferroelectric HfO2-based thin films for memory applications. MRS Commun, 2018, 8: 795–808

    Article  Google Scholar 

  10. Ihlefeld J F, Harris D T, Keech R, et al. Scaling effects in perovskite ferroelectrics: fundamental limits and process-structure-property relations. J Am Ceram Soc, 2016, 99: 2537–2557

    Article  Google Scholar 

  11. Han J P, Ma T P. Ferroelectric-gate transistor as a capacitor-less DRAM cell (FEDRAM). Integrated Ferroelectrics, 1999, 27: 9–18

    Article  Google Scholar 

  12. Takahashi M, Sakai S. Downsizing of ferroelectric-gate field-effect-transistors for ferroelectric-NAND flash memory cells. In: Proceedings of the 3rd IEEE International Memory Workshop (IMW), 2011. 1–4

  13. Florent K, Lavizzari S, Di Piazza L, et al. Reliability study of ferroelectric Al:HfO2 thin films for DRAM and NAND applications. IEEE Trans Electron Devices, 2017, 64: 4091–4098

    Article  Google Scholar 

  14. Sugibuchi K, Kurogi Y, Endo N. Ferroelectric field-effect memory device using Bi4Ti3O12 film. J Appl Phys, 1975, 46: 2877–2881

    Article  Google Scholar 

  15. Aizawa K, Park B E, Kawashima Y, et al. Impact of HfO2 buffer layers on data retention characteristics of ferroelectric-gate field-effect transistors. Appl Phys Lett, 2004, 85: 3199–3201

    Article  Google Scholar 

  16. Cagli C, Perniola L, Gaillard F, et al. Performance improvement on HfO2-based 1T ferroelectric NVM by electrical preconditioning. In: Proceedings of IEEE International Reliability Physics Symposium (IRPS), 2019. 1–4

  17. Tu L Q, Cao R R, Wang X D, et al. Ultrasensitive negative capacitance phototransistors. Nat Commun, 2020, 11: 101

    Article  Google Scholar 

  18. Tenne D A, Turner P, Schmidt J D, et al. Ferroelectricity in ultrathin BaTiO3 films: probing the size effect by ultraviolet raman spectroscopy. Phys Rev Lett, 2009, 103: 177601

    Article  Google Scholar 

  19. Stengel M, Spaldin N A. Origin of the dielectric dead layer in nanoscale capacitors. Nature, 2006, 443: 679–682

    Article  Google Scholar 

  20. Hoffman J, Pan X, Reiner J W, et al. Ferroelectric field effect transistors for memory applications. Adv Mater, 2010, 22: 2957–2961

    Article  Google Scholar 

  21. Pan X, Ma T P. Retention mechanism study of the ferroelectric field effect transistor. Appl Phys Lett, 2011, 99: 013505

    Article  Google Scholar 

  22. Lipatov A, Fursina A, Vo T H, et al. Polarization-dependent electronic transport in graphene/Pb(Zr,Ti)O3 ferroelectric field-effect transistors. Adv Electron Mater, 2017, 3: 1700020

    Article  Google Scholar 

  23. Zhang X-W, Xie D, Xu J-L, et al. MoS2 field-effect transistors with lead zirconate-titanate ferroelectric gating. IEEE Electron Device Lett, 2015, 36: 784–786

    Article  Google Scholar 

  24. Park N, Kang H, Park J, et al. Ferroelectric single-crystal gated Graphene/Hexagonal-BN/Ferroelectric field-effect transistor. ACS Nano, 2015, 9: 10729–10736

    Article  Google Scholar 

  25. Schwierz F. Graphene transistors. Nat Nanotech, 2010, 5: 487–496

    Article  Google Scholar 

  26. Zheng Y, Ni G X, Toh C T, et al. Graphene field-effect transistors with ferroelectric gating. Phys Rev Lett, 2010, 105: 166602

    Article  Google Scholar 

  27. Ko C, Lee Y, Chen Y, et al. Ferroelectrically gated atomically thin transition-metal dichalcogenides as nonvolatile memory. Adv Mater, 2016, 28: 2923–2930

    Article  Google Scholar 

  28. Chang K, Liu J, Lin H, et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science, 2016, 353: 274–278

    Article  Google Scholar 

  29. Ding W, Zhu J, Wang Z, et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat Commun, 2017, 8: 14956

    Article  Google Scholar 

  30. Liu F, You L, Seyler K L, et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat Commun, 2016, 7: 12357

    Article  Google Scholar 

  31. Yuan S, Luo X, Chan H L, et al. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat Commun, 2019, 10: 1775

    Article  Google Scholar 

  32. Fei R, Kang W, Yang L. Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides. Phys Rev Lett, 2016, 117: 097601

    Article  Google Scholar 

  33. Xiao J, Zhu H, Wang Y, et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys Rev Lett, 2018, 120: 227601

    Article  Google Scholar 

  34. Xue F, Hu W, Lee K-C, et al. Room-temperature ferroelectricity in hexagonally layered α-In2Se3 nanoflakes down to the monolayer limit. Adv Funct Mater, 2018, 28: 1803738

    Article  Google Scholar 

  35. Li Y, Chen C, Li W, et al. Orthogonal electric control of the out-of-plane field-effect in 2D ferroelectric a-In2Se3. Adv Electron Mater, 2020, 6: 2000061

    Article  Google Scholar 

  36. Dai M, Li K, Wang F, et al. Intrinsic dipole coupling in 2D van der Waals ferroelectrics for gate-controlled switchable rectifier. Adv Electron Mater, 2019, 6: 1900975

    Article  Google Scholar 

  37. Poh S M, Tan S J R, Wang H, et al. Molecular-beam epitaxy of two-dimensional In2Se3 and its giant electroresistance switching in ferroresistive memory junction. Nano Lett, 2018, 18: 6340–6346

    Article  Google Scholar 

  38. Castellanos-Gomez A, Buscema M, Molenaar R, et al. Deterministic transfer of two-dimensional materials by all-dry vis-coelastic stamping. 2D Mater, 2014, 1: 011002

    Article  Google Scholar 

  39. Jiang C, Rumyantsev S L, Samnakay R, et al. High-temperature performance of MoS2 thin-film transistors: direct current and pulse current-voltage characteristics. J Appl Phys, 2015, 117: 064301

    Article  Google Scholar 

  40. Kim S, Konar A, Hwang W S, et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat Commun, 2012, 3: 1011

    Article  Google Scholar 

  41. Cui C, Hu W J, Yan X, et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett, 2018, 18: 1253–1258

    Article  Google Scholar 

  42. Zhou Y, Wu D, Zhu Y, et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett, 2017, 17: 5508–5513

    Article  Google Scholar 

  43. Late D J, Liu B, Matte H S S R, et al. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano, 2016, 6: 5635–5641

    Article  Google Scholar 

  44. Wan S, Li Y, Li W, et al. Room-temperature ferroelectricity and a switchable diode effect in two-dimensional a-In2Se3 thin layers. Nanoscale, 2018, 10: 14885–14892

    Article  Google Scholar 

  45. Fei Z, Zhao W, Palomaki T A, et al. Ferroelectric switching of a two-dimensional metal. Nature, 2018, 560: 336–339

    Article  Google Scholar 

  46. Wu S, Wu G, Wang X, et al. A gate-free MoS2 phototransistor assisted by ferroelectrics. J Semicond, 2019, 40: 092002

    Article  Google Scholar 

  47. Pintilie L, Vrejoiu I, Hesse D, et al. Ferroelectric polarization-leakage current relation in high quality epitaxial Pb(Zr, Ti)O3 films. Phys Rev B, 2007, 75: 104103

    Article  Google Scholar 

  48. Fang N, Toyoda S, Taniguchi T, et al. Full energy spectra of interface state densities for n- and p-type MoS2 field-effect transistors. Adv Funct Mater, 2019, 29: 1904465

    Article  Google Scholar 

  49. Wu S Q, Wang X D, Jiang W, et al. Interface engineering of ferroelectric-gated MoS2 phototransistor. Sci China Inf Sci, 2021, 64: 140407

    Article  Google Scholar 

  50. Shu J, Wu G, Guo Y, et al. The intrinsic origin of hysteresis in MoS2 field effect transistors. Nanoscale, 2016, 8: 3049–3056

    Article  Google Scholar 

  51. Qiu H, Pan L, Yao Z, et al. Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Appl Phys Lett, 2012, 100: 123104

    Article  Google Scholar 

  52. Vu Q A, Fan S, Hyup Lee S, et al. Near-zero hysteresis and near-ideal subthreshold swing in h-BN encapsulated single-layer MoS2 field-effect transistors. 2D Mater, 2018, 5: 031001

    Article  Google Scholar 

  53. Li T, Du G, Zhang B, et al. Scaling behavior of hysteresis in multilayer MoS2 field effect transistors. Appl Phys Lett, 2014, 105: 093107

    Article  Google Scholar 

  54. Kang L, Jiang P, Hao H, et al. Giant tunneling electroresistance in two-dimensional ferroelectric tunnel junctions with out-of-plane ferroelectric polarization. Phys Rev B, 2020, 101: 014105

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 62174065, 61774068), Key Research and Development Plan of Hubei Province (Grant No. 2020BAB007), and Hubei Provincial Natural Science Foundation of China (Grant No. 2021CFA038). The authors acknowledge the support from Hubei Key Laboratory of Advanced Memories & Hubei Engineering Research Center on Microelectronics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Tong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Feng, Z., Cai, J. et al. All-van der Waals stacking ferroelectric field-effect transistor based on In2Se3 for high-density memory. Sci. China Inf. Sci. 66, 182401 (2023). https://doi.org/10.1007/s11432-022-3617-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3617-2

Keywords

Navigation