Skip to main content
Log in

Results on the realization of Boolean control networks by the vertex partition method

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Realization problems, including the minimum realization of Boolean control networks (BCNs), are investigated by the vertex partition method. A general definition of the realization for BCNs that does not involve any subspaces is proposed. For the new and existing realization definitions, by a common concolorous perfect vertex partition (CCP-VP) of vertex-colored state transition graphs, an equivalence relation and a quotient mapping are defined, which induce a quotient system, i.e., the realization of original BCNs. In addition, if the CCP-VP is an equal partition, a realization induced by a γ-friendly controlled invariant regular subspace is constructed. Finally, an algorithm is designed to construct the minimum realization of BCNs for different realization definitions, and three examples are given to illustrate the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kauffman S A. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 1969, 22: 437–467

    Article  MathSciNet  Google Scholar 

  2. Dolgov S, Khoromskij B. Simultaneous state-time approximation of the chemical master equation using tensor product formats. Numer Linear Algebra Appl, 2015, 22: 197–219

    Article  MathSciNet  MATH  Google Scholar 

  3. Chai L E, Loh S K, Low S T, et al. A review on the computational approaches for gene regulatory network construction. Comput Biol Med, 2014, 48: 55–65

    Article  Google Scholar 

  4. Farrow C, Heidel J, Maloney J, et al. Scalar equations for synchronous Boolean networks with biological applications. IEEE Trans Neural Netw, 2004, 15: 348–354

    Article  Google Scholar 

  5. Harris S E, Sawhill B K, Wuensche A, et al. A model of transcriptional regulatory networks based on biases in the observed regulation rules. Complexity, 2002, 7: 23–40

    Article  Google Scholar 

  6. Huang S, Ingber D E. Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks. Exp Cell Res, 2000, 261: 91–103

    Article  Google Scholar 

  7. Datta A, Choudhary A, Bittner M L, et al. External control in Markovian genetic regulatory networks: the imperfect information case. Bioinformatics, 2004, 20: 924–930

    Article  Google Scholar 

  8. Cheng D, Qi H, Li Z. Analysis and Control of Boolean Networks: A Semi-Tensor Product Approach. London: Springer-Verlag, 2011

    Book  MATH  Google Scholar 

  9. Li Z Q, Song J L. Controllability of Boolean control networks avoiding states set. Sci China Inf Sci, 2014, 57: 032205

    Article  MATH  Google Scholar 

  10. Liang J L, Chen H W, Lam J. An improved criterion for controllability of Boolean control networks. IEEE Trans Automat Contr, 2017, 62: 6012–6018

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhu Q X, Gao Z G, Liu Y, et al. Categorization problem on controllability of Boolean control networks. IEEE Trans Automat Contr, 2021, 66: 2297–2303

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheng D Z, Li C X, He F H. Observability of Boolean networks via set controllability approach. Syst Control Lett, 2018, 115: 22–25

    Article  MathSciNet  MATH  Google Scholar 

  13. Fornasini E, Valcher M E. Observability, reconstructibility and state observers of Boolean control networks. IEEE Trans Automat Contr, 2013, 58: 1390–1401

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang K Z, Johansson K H. Efficient verification of observability and reconstructibility for large Boolean control networks with special structures. IEEE Trans Automat Contr, 2020, 65: 5144–5158

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhu Q X, Liu Y, Lu J Q, et al. Observability of Boolean control networks. Sci China Inf Sci, 2018, 61: 092201

    Article  MathSciNet  Google Scholar 

  16. Laschov D, Margaliot M, Even G. Observability of Boolean networks: a graph-theoretic approach. Automatica, 2013, 49: 2351–2362

    Article  MathSciNet  MATH  Google Scholar 

  17. Wu Y H, Guo Y Q, Toyoda M. Policy iteration approach to the infinite horizon average optimal control of probabilistic Boolean networks. IEEE Trans Neural Netw Learn Syst, 2021, 32: 2910–2924

    Article  MathSciNet  Google Scholar 

  18. Gao S H, Sun C K, Xiang C, et al. Finite-horizon optimal control of Boolean control networks: a unified graph-theoretical approach. IEEE Trans Neural Netw Learn Syst, 2022, 33: 157–171

    Article  MathSciNet  Google Scholar 

  19. Li R, Yang M, Chu T G. State feedback stabilization for Boolean control networks. IEEE Trans Automat Contr, 2013, 58: 1853–1857

    Article  MathSciNet  MATH  Google Scholar 

  20. Guo Y Q, Shen Y W, Gui W H. Asymptotical stability of logic dynamical systems with random impulsive disturbances. IEEE Trans Automat Contr, 2021, 66: 513–525

    Article  MathSciNet  MATH  Google Scholar 

  21. Li H T, Yang X R, Wang S L. Robustness for stability and stabilization of Boolean networks with stochastic function perturbations. IEEE Trans Automat Contr, 2021, 66: 1231–1237

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen B Q, Cao J D, Lu G P, et al. Stabilization of Markovian jump Boolean control networks via event-triggered control. IEEE Trans Automat Contr, 2023, 68: 1215–1222

    Article  MathSciNet  Google Scholar 

  23. Meng M, Lam J, Feng J-E. Stability and guaranteed cost analysis of time-triggered Boolean networks. IEEE Trans Neural Networks Learn Syst, 2018, 29: 3893–3899

    Article  MathSciNet  Google Scholar 

  24. Cheng D Z, Li Z Q, Qi H S. Realization of Boolean control networks. Automatica, 2010, 46: 62–69

    Article  MathSciNet  MATH  Google Scholar 

  25. Zou Y L, Zhu J D. Kalman decomposition for Boolean control networks. Automatica, 2015, 54: 65–71

    Article  MathSciNet  MATH  Google Scholar 

  26. Li Y F, Zhu J D, Li B W, et al. A necessary and sufficient graphic condition for the original disturbance decoupling of Boolean networks. IEEE Trans Automat Contr, 2021, 66: 3765–3772

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu Y, Li B W, Lu J Q, et al. Pinning control for the disturbance decoupling problem of Boolean networks. IEEE Trans Automat Contr, 2017, 62: 6595–6601

    Article  MathSciNet  MATH  Google Scholar 

  28. Yu Y Y, Feng J-E, Pan J F, et al. Block decoupling of Boolean control networks. IEEE Trans Automat Contr, 2019, 64: 3129–3140

    Article  MathSciNet  MATH  Google Scholar 

  29. Li Y F, Zhu J D. Necessary and sufficient vertex partition conditions for input-output decoupling of Boolean control networks. Automatica, 2022, 137: 110097

    Article  MathSciNet  MATH  Google Scholar 

  30. Li H T, Xie L H, Wang Y Z. Output regulation of Boolean control networks. IEEE Trans Automat Contr, 2016, 62: 2993–2998

    Article  MathSciNet  MATH  Google Scholar 

  31. Chen H W, Liang J L, Lu J Q, et al. Synchronization for the realization-dependent probabilistic Boolean networks. IEEE Trans Neural Netw Learn Syst, 2018, 29: 819–831

    Article  MathSciNet  Google Scholar 

  32. Zhong J, Lu J Q, Liu Y, et al. Synchronization in an array of output-coupled Boolean networks with time delay. IEEE Trans Neural Netw Learn Syst, 2014, 25: 2288–2294

    Article  Google Scholar 

  33. Li H T, Liu Y N, Wang S L, et al. State feedback stabilization of large-scale logical control networks via network aggregation. IEEE Trans Automat Contr, 2021, 66: 6033–6040

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhong J, Ho D W C, Lu J Q. A new approach to pinning control of Boolean networks. IEEE Trans Control Netw Syst, 2022, 9: 415–426

    Article  MathSciNet  Google Scholar 

  35. Zhu S Y, Lu J Q, Sun L J, et al. Distributed pinning set stabilization of large-scale Boolean networks. IEEE Trans Automat Contr, 2022, 68: 1886–1893

    Article  MathSciNet  Google Scholar 

  36. Pan J F, Feng J-E, Meng M, et al. Design of large-scale Boolean networks based on prescribed attractors. Int J Control Autom Syst, 2018, 16: 1120–1128

    Article  Google Scholar 

  37. Li F F. Synchronization of coupled large-scale Boolean networks. Chaos, 2014, 24: 013115

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhao Y, Ghosh B K, Cheng D Z. Control of large-scale Boolean networks via network aggregation. IEEE Trans Neural Netw Learn Syst, 2016, 27: 1527–1536

    Article  MathSciNet  Google Scholar 

  39. Acernese A, Yerudkar A, Glielmo L, et al. Reinforcement learning approach to feedback stabilization problem of probabilistic Boolean control networks. IEEE Control Syst Lett, 2020, 5: 337–342

    MathSciNet  Google Scholar 

  40. Wonham W. Linear Multivariable Control: A Geometric Approach. Berlin: Springer-Verlag, 1979

    Book  MATH  Google Scholar 

  41. Cheng D Z, Zhang L J, Bi D Y. Invariant subspace approach to Boolean (control) networks. IEEE Trans Automat Contr, 2022, 68: 2325–2337

    Article  MathSciNet  Google Scholar 

  42. Zou Y L, Zhu J D. System decomposition with respect to inputs for Boolean control networks. Automatica, 2014, 50: 1304–1309

    Article  MathSciNet  MATH  Google Scholar 

  43. Weiss E, Margaliot M. A polynomial-time algorithm for solving the minimal observability problem in conjunctive Boolean networks. IEEE Trans Automat Contr, 2019, 64: 2727–2736

    Article  MathSciNet  MATH  Google Scholar 

  44. Gao S H, Xiang C, Lee T H. Set invariance and optimal set stabilization of Boolean control networks: a graphical approach. IEEE Trans Control Netw Syst, 2021, 8: 400–412

    Article  MathSciNet  MATH  Google Scholar 

  45. Potucek R. Construction of the smallest common coarser of two and three set partitions. Analele Univ Ovid Constanta-Seria Mat, 2014, 22: 237–246

    MathSciNet  MATH  Google Scholar 

  46. Cheng D Z, Qi H S. State-space analysis of Boolean networks. IEEE Trans Neural Netw, 2010, 21: 584–594

    Article  Google Scholar 

  47. Li Y F, Zhu J D. Observability decomposition of Boolean control networks. IEEE Trans Automat Contr, 2023, 68: 1267–1274

    Article  MathSciNet  Google Scholar 

  48. Chaves M. Methods for qualitative analysis of genetic networks. In: Proceedings of European Control Conference, Budapest, 2009. 671–676

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11991020, 11991024, 61673012, 11971240), Research Project of Chongqing National Center for Applied Mathematics (Grant No. ncamc2022-msxm05), and Chongqing Normal University Foundation (Grant No. 21XLB045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiandong Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhu, J. & Liu, X. Results on the realization of Boolean control networks by the vertex partition method. Sci. China Inf. Sci. 66, 172205 (2023). https://doi.org/10.1007/s11432-022-3607-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3607-6

Keywords

Navigation