Skip to main content
Log in

Improving performance of robots using human-inspired approaches: a survey

  • Review
  • From CAS & CAE Members
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Realizing high performance of ordinary robots is one of the core problems in robotic research. Improving the performance of ordinary robots usually relies on the collaborative development of multiple research fields, resulting in high costs and difficulty to complete some high-precision tasks. As a comparison, humans can realize extraordinary overall performance under the condition of limited computational-energy consumption and low absolute precision in sensing and controlling each body unit. Therefore, developing human-inspired robotic systems and algorithms is a promising avenue to improve the performance of robotic systems. In this review, the cutting-edge research work on human-inspired intelligent robots in decision-making, cognition, motion control, and system design is summarized from behavior- and neural-inspired aspects. This review aims to provide a significant insight into human-inspired intelligent robots, which may be beneficial for promoting the integration of neuroscience, machinery, and control, so as to develop a new generation of robotic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yin P, Qiao H, Wu W, et al. A novel biologically inspired visual cognition model: automatic extraction of semantics, formation of integrated concepts, and reselection features for ambiguity. IEEE Trans Cogn Dev Syst, 2017, 10: 420–431

    Article  Google Scholar 

  2. Huang X, Wu W, Qiao H. Connecting model-based and model-free control with emotion modulation in learning systems. IEEE Trans Syst Man Cybern Syst, 2021, 51: 4624–4638

    Article  Google Scholar 

  3. Chen J, Zhong S, Kang E, et al. Realizing human-like manipulation with a musculoskeletal system and biologically inspired control scheme. Neurocomputing, 2019, 339: 116–129

    Article  Google Scholar 

  4. Jabalpurwala I. Brain Canada: one brain one community. Neuron, 2016, 92: 601–606

    Article  Google Scholar 

  5. Carter A, Richards L J, Apthorp D, et al. A neuroethics framework for the Australian Brain Initiative. Neuron, 2019, 101: 365–369

    Article  Google Scholar 

  6. Bargmann C I, Newsome W T. The brain research through advancing innovative neurotechnologies (BRAIN) initiative and neurology. JAMA Neurol, 2014, 71: 675–676

    Article  Google Scholar 

  7. The Lancet Neurology. The Human Brain Project: mutiny on the flagship. Lancet Neurol, 2014, 13: 855

    Article  Google Scholar 

  8. Frégnac Y, Laurent G. Neuroscience: where is the brain in the Human Brain Project? Nature, 2014, 513: 27–29

    Article  Google Scholar 

  9. Okano H, Sasaki E, Yamamori T, et al. Brain/MINDS: a Japanese national brain project for marmoset neuroscience. Neuron, 2016, 92: 582–590

    Article  Google Scholar 

  10. Cyranoski D. Marmosets are stars of Japan’s ambitious brain project. Nature, 2014, 514: 151–152

    Article  Google Scholar 

  11. Jeong S J, Lee H, Hur E M, et al. Korea brain initiative: integration and control of brain functions. Neuron, 2016, 92: 607–611

    Article  Google Scholar 

  12. Poo M M, Du J L, Ip N Y, et al. China Brain Project: basic neuroscience, brain diseases, and brain-inspired computing. Neuron, 2016, 92: 591–596

    Article  Google Scholar 

  13. Crossler R E, Long J H, Loraas T M, et al. Understanding compliance with bring your own device policies utilizing protection motivation theory: bridging the intention-behavior gap. J Inf Syst, 2014, 28: 209–226

    Google Scholar 

  14. Song P, Yu Y, Zhang X. A tutorial survey and comparison of impedance control on robotic manipulation. Robotica, 2019, 37: 801–836

    Article  Google Scholar 

  15. Jorg S, Langwald J, Stelter J, et al. Flexible robot-assembly using a multi-sensory approach. In: Proceedings of IEEE International Conference on Robotics and Automation, 2000. 3687–3694

  16. Ma Y, Du K, Zhou D, et al. Automatic precision robot assembly system with microscopic vision and force sensor. Int J Adv Robotic Syst, 2019, 16: 1–15

    Google Scholar 

  17. Kalashnikov D, Irpan A, Pastor P, et al. Scalable deep reinforcement learning for vision-based robotic manipulation. In: Proceedings of Conference on Robot Learning, 2018. 651–673

  18. Gao J, Kang E, He W, et al. Adaptive model-based dynamic event-triggered output feedback control of a robotic manipulator with disturbance. ISA Trans, 2022, 122: 63–78

    Article  Google Scholar 

  19. Yun S K. Compliant manipulation for peg-in-hole: is passive compliance a key to learn contact motion? In: Proceedings of 2008 IEEE International Conference on Robotics and Automation, 2008. 1647–1652

  20. Lee W, Amini H, Stone H A, et al. Dynamic self-assembly and control of microfluidic particle crystals. Proc Natl Acad Sci USA, 2010, 107: 22413–22418

    Article  Google Scholar 

  21. Qiao H, Yin P, Li R, et al. What is the meaning for the interdisciplinary research of robot and neuroscience?—Thoughts on the future development of intelligent robot. Bulletin of Chinese Academy of Sciences, 2015, 30: 762–771

    Google Scholar 

  22. Qiao H, Wang M, Su J, et al. The concept of “attractive region in environment” and its application in high-precision tasks with low-precision systems. IEEE ASME Trans Mechatron, 2014, 20: 2311–2327

    Article  Google Scholar 

  23. Li R, Qiao H. Condition and strategy analysis for assembly based on attractive region in environment. IEEE ASME Trans Mechatron, 2017, 22: 2218–2228

    Article  Google Scholar 

  24. Li R, Qiao H. A survey of methods and strategies for high-precision robotic grasping and assembly tasks-some new trends. IEEE ASME Trans Mechatron, 2019, 24: 2718–2732

    Article  Google Scholar 

  25. Qiao H, Li R, Yin P. Robotics and automation activities in China. IEEE Robot Automat Mag, 2015, 22: 14–17

    Article  Google Scholar 

  26. Li X, Qian Y, Li R, et al. Robust form-closure grasp planning for 4-pin gripper using learning-based attractive region in environment. Neurocomputing, 2020, 384: 268–281

    Article  Google Scholar 

  27. Liu C K, Qiao H, Su J H, et al. Vision-based 3-D grasping of 3-D objects with a simple 2-D gripper. IEEE Trans Syst Man Cybern Syst, 2014, 44: 605–620

    Article  Google Scholar 

  28. Liu C, Qiao H, Zhang B. Stable sensorless localization of 3-D objects. IEEE Trans Syst Man Cybern C, 2011, 41: 923–941

    Article  Google Scholar 

  29. Qiao H. Application of “generalized attractive region” in orienting 3D polyhedral part. In: Proceedings of 2003 IEEE International Conference on Robotics and Automation, 2003. 2248–2254

  30. Su J, Qiao H, Liu C, et al. A new insertion strategy for a peg in an unfixed hole of the piston rod assembly. Int J Adv Manuf Technol, 2012, 59: 1211–1225

    Article  Google Scholar 

  31. Su J, Qiao H, Ou Z, et al. Sensor-less insertion strategy for an eccentric peg in a hole of the crankshaft and bearing assembly. Assembly Automation, 2012, 32: 86–99

    Article  Google Scholar 

  32. Li X, Li R, Qiao H, et al. Human-inspired compliant strategy for peg-in-hole assembly using environmental constraint and coarse force information. In: Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017. 4743–4748

  33. Su J, Li R, Qiao H, et al. Study on dual peg-in-hole insertion using of constraints formed in the environment. Indust Robot, 2017, 44: 730–740

    Article  Google Scholar 

  34. Liu Y, Chen Z, Zhang X, et al. Compliant peg-in-hole assembly for components with grooves based on attractive region in environment. In: Proceedings of the 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM), 2021. 919–924

  35. Chen Z, Qiao H. Realizing compliant insertion task based on attractive-region-in-environment. In: Proceedings of the 7th International Conference on Information Science and Control Engineering (ICISCE), 2020. 1063–1067

  36. Lövheim H. A new three-dimensional model for emotions and monoamine neurotransmitters. Med Hypotheses, 2012, 78: 341–348

    Article  Google Scholar 

  37. Bayer H M, Glimcher P W. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron, 2005, 47: 129–141

    Article  Google Scholar 

  38. Hasselmo M E. The role of acetylcholine in learning and memory. Curr Opin Neurobiol, 2006, 16: 710–715

    Article  Google Scholar 

  39. Phelps E A, Lempert K M, Sokol-Hessner P. Emotion and decision making: multiple modulatory neural circuits. Annu Rev Neurosci, 2014, 37: 263–287

    Article  Google Scholar 

  40. Khamassi M, Humphries M D. Integrating cortico-limbic-basal ganglia architectures for learning model-based and model-free navigation strategies. Front Behav Neurosci, 2012, 6: 79

    Article  Google Scholar 

  41. Yin H H, Knowlton B J. Contributions of striatal subregions to place and response learning. Learn Mem, 2004, 11: 459–463

    Article  Google Scholar 

  42. Yin H H, Knowlton B J. The role of the basal ganglia in habit formation. Nat Rev Neurosci, 2006, 7: 464–476

    Article  Google Scholar 

  43. Rudebeck P H, Mitz A R, Chacko R V, et al. Effects of amygdala lesions on reward-value coding in orbital and medial prefrontal cortex. Neuron, 2013, 80: 1519–1531

    Article  Google Scholar 

  44. Daw N D, Niv Y, Dayan P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci, 2005, 8: 1704–1711

    Article  Google Scholar 

  45. Lee S W, Shimojo S, O’Doherty J P. Neural computations underlying arbitration between model-based and model-free learning. Neuron, 2014, 81: 687–699

    Article  Google Scholar 

  46. Scheutz M. Useful roles of emotions in artificial agents: a case study from artificial life. In: Proceedings of National Conference on Artifical Intelligence, 2004. 42–48

  47. Moerland T M, Broekens J, Jonker C M. Emotion in reinforcement learning agents and robots: a survey. Mach Learn, 2018, 107: 443–480

    Article  MathSciNet  Google Scholar 

  48. Savinov N, Raichuk A, Marinier R, et al. Episodic curiosity through reachability. 2018. ArXiv:1810.02274

  49. Huang X, Wu W, Qiao H, et al. Brain-inspired motion learning in recurrent neural network with emotion modulation. IEEE Trans Cogn Dev Syst, 2018, 10: 1153–1164

    Article  Google Scholar 

  50. Doya K. Metalearning and neuromodulation. Neural Networks, 2002, 15: 495–506

    Article  Google Scholar 

  51. Shi X, Wang Z, Zhang Q. Artificial emotion model based on neuromodulators and Q-learning. In: Proceedings of Future Control and Automation, 2012. 293–299

  52. Williams H, Lee-Johnson C, Browne W N, et al. Emotion inspired adaptive robotic path planning. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC), 2015. 3004–3011

  53. Ficocelli M, Terao J, Nejat G. Promoting interactions between humans and robots using robotic emotional behavior. IEEE Trans Cybern, 2015, 46: 2911–2923

    Article  Google Scholar 

  54. Etkin A, Büchel C, Gross J J. The neural bases of emotion regulation. Nat Rev Neurosci, 2015, 16: 693–700

    Article  Google Scholar 

  55. Hoey J, Schroder T, Alhothali A. Bayesian affect control theory. In: Proceedings of Humaine Association Conference on Affective Computing and Intelligent Interaction, 2013. 166–172

  56. Joffily M, Coricelli G. Emotional valence and the free-energy principle. Plos Comput Biol, 2013, 9: e1003094

    Article  Google Scholar 

  57. Grossberg S. On the dynamics of operant conditioning. J Theor Biol, 1971, 33: 225–255

    Article  Google Scholar 

  58. Grossberg S. A neural model of attention, reinforcement and discrimination learning. Int Rev Neurobiol, 1975, 18: 263–327

    Article  Google Scholar 

  59. Grossberg S, Gutowski W E. Neural dynamics of decision making under risk: affective balance and cognitive-emotional interactions. Psychol Rev, 1987, 94: 300–318

    Article  Google Scholar 

  60. Leven S J, Levine D S. Multiattribute decision making in context: a dynamic neural network methodology. Cogn Sci, 1996, 20: 271–299

    Article  Google Scholar 

  61. Levine D S. Neural network modeling of emotion. Phys Life Rev, 2007, 4: 37–63

    Article  Google Scholar 

  62. Balkenius C, MorÉn J. Emotional learning: a computational model of the amygdala. Cybern Syst, 2001, 32: 611–636

    Article  Google Scholar 

  63. Sharbafi M A, Lucas C, Daneshvar R. Motion control of omni-directional three-wheel robots by brain-emotional-learning-based intelligent controller. IEEE Trans Syst Man Cybern C, 2010, 40: 630–638

    Article  Google Scholar 

  64. Markadeh G R, Daryabeigi E, Lucas C, et al. Speed and flux control of induction motors using emotional intelligent controller. IEEE Trans Ind Applicat, 2011, 47: 1126–1135

    Article  Google Scholar 

  65. Soreshjani M H, Markadeh G A, Daryabeigi E, et al. Application of brain emotional learning-based intelligent controller to power flow control with thyristor-controlled series capacitance. IET Gener Transm Distrib, 2015, 9: 1964–1976

    Article  Google Scholar 

  66. Otto A R, Raio C M, Chiang A, et al. Working-memory capacity protects model-based learning from stress. Proc Natl Acad Sci USA, 2013, 110: 20941–20946

    Article  Google Scholar 

  67. Schwabe L, Wolf O T. Stress prompts habit behavior in humans. J Neurosci, 2009, 29: 7191–7198

    Article  Google Scholar 

  68. Arnsten A F T. Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci, 2009, 10: 410–422

    Article  Google Scholar 

  69. Huang X, Wu W, Qiao H. Computational modeling of emotion-motivated decisions for continuous control of mobile robots. IEEE Trans Cogn Dev Syst, 2020, 13: 31–44

    Article  Google Scholar 

  70. Qin Z, Wang P, Sun J, et al. Precise robotic assembly for large-scale objects based on automatic guidance and alignment. IEEE Trans Instrum Meas, 2016, 65: 1398–1411

    Article  Google Scholar 

  71. Su J, Liu Z Y, Qiao H, et al. Pose-estimation and reorientation of pistons for robotic bin-picking. Industrial Robot-An Int J, 2016, 43: 22–32

    Article  Google Scholar 

  72. Su J, Ou Z, Qiao H. Form-closure caging grasps of polygons with a parallel-jaw gripper. Robotica, 2015, 33: 1375–1392

    Article  Google Scholar 

  73. Qiao H. Attractive regions formed by the environment in configuration space: the possibility of achieving high precision sensorless manipulation in production. Int J Production Res, 2002, 40: 975–1002

    Article  Google Scholar 

  74. Qiao H. Two- and three-dimensional part orientation by sensor-less grasping and pushing actions: use of the concept of ‘attractive region in environment’. Int J Production Res, 2003, 41: 3159–3184

    Article  Google Scholar 

  75. Gross J J, Sheppes G, Urry H L. Emotion generation and emotion regulation: a distinction we should make (carefully). Cognition Emotion, 2011, 25: 765–781

    Article  Google Scholar 

  76. Ochsner K N, Ray R R, Hughes B, et al. Bottom-up and top-down processes in emotion generation. Psychol Sci, 2009, 20: 1322–1331

    Article  Google Scholar 

  77. Damasio A R. Emotion and the human brain. Ann New York Acad Sci, 2006, 935: 101–106

    Article  Google Scholar 

  78. Cohen J D. The vulcanization of the human brain: a neural perspective on interactions between cognition and emotion. J Economic Perspectives, 2005, 19: 3–24

    Article  Google Scholar 

  79. Rolls E T. Limbic systems for emotion and for memory, but no single limbic system. Cortex, 2015, 62: 119–157

    Article  Google Scholar 

  80. Phelps E A, LeDoux J E. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron, 2005, 48: 175–187

    Article  Google Scholar 

  81. Barbas H. Anatomic basis of cognitive-emotional interactions in the primate prefrontal cortex. Neurosci Biobehaval Rev, 1995, 19: 499–510

    Article  Google Scholar 

  82. Fan M, Qiao H, Zhang B. Intrinsic dimension estimation of manifolds by incising balls. Pattern Recogn, 2009, 42: 780–787

    Article  Google Scholar 

  83. Zhang P, Qiao H, Zhang B. An improved local tangent space alignment method for manifold learning. Pattern Recogn Lett, 2011, 32: 181–189

    Article  Google Scholar 

  84. Fan M, Zhang X, Qiao H, et al. Efficient isometric multi-manifold learning based on the self-organizing method. Inf Sci, 2016, 345: 325–339

    Article  Google Scholar 

  85. Qiao H, Zhang P, Wang D, et al. An explicit nonlinear mapping for manifold learning. IEEE Trans Cybern, 2012, 43: 51–63

    Article  Google Scholar 

  86. Ying S, Wen Z, Shi J, et al. Manifold preserving: an intrinsic approach for semisupervised distance metric learning. IEEE Trans Neural Netw Learn Syst, 2017, 29: 2731–2742

    MathSciNet  Google Scholar 

  87. Ding S, Xi X, Liu Z, et al. A novel manifold regularized online semi-supervised learning model. Cogn Comput, 2018, 10: 49–61

    Article  Google Scholar 

  88. Fan M, Gu N, Qiao H, et al. Dimensionality reduction: an interpretation from manifold regularization perspective. Inf Sci, 2014, 277: 694–714

    Article  MathSciNet  Google Scholar 

  89. Liu S, Wu J, Feng L, et al. Perceptual uniform descriptor and ranking on manifold for image retrieval. Inf Sci, 2018, 424: 235–249

    Article  MathSciNet  Google Scholar 

  90. Liu S, Feng L, Liu Y, et al. Manifold warp segmentation of human action. IEEE Trans Neural Netw Learn Syst, 2017, 29: 1414–1426

    Article  MathSciNet  Google Scholar 

  91. Qiao H, Zhang P, Zhang B, et al. Learning an intrinsic-variable preserving manifold for dynamic visual tracking. IEEE Trans Syst Man Cybern B, 2009, 40: 868–880

    Article  Google Scholar 

  92. Qiao H, Zhang P, Zhang B, et al. Tracking feature extraction based on manifold learning framework. J Exp Theor Artif Intell, 2011, 23: 23–38

    Article  Google Scholar 

  93. Wang M, Qiao H, Zhang B. A new algorithm for robust pedestrian tracking based on manifold learning and feature selection. IEEE Trans Intell Transp Syst, 2011, 12: 1195–1208

    Article  Google Scholar 

  94. Daugman J G. Two-dimensional spectral analysis of cortical receptive field profiles. Vision Res, 1980, 20: 847–856

    Article  Google Scholar 

  95. Carandini M, Heeger D J. Summation and division by neurons in primate visual cortex. Science, 1994, 264: 1333–1336

    Article  Google Scholar 

  96. Yuille A L, Grzywacz N M. A computational theory for the perception of coherent visual motion. Nature, 1988, 333: 71–74

    Article  Google Scholar 

  97. Rousselet G A, Thorpe S J, Fabre-Thorpe M. Taking the MAX from neuronal responses. Trends Cogn Sci, 2003, 7: 99–102

    Article  Google Scholar 

  98. Poggio T, Bizzi E. Generalization in vision and motor control. Nature, 2004, 431: 768–774

    Article  Google Scholar 

  99. Fukushima K. Neocognitron: a hierarchical neural network capable of visual pattern recognition. Neural Networks, 1988, 1: 119–130

    Article  Google Scholar 

  100. Serre T, Wolf L, Bileschi S, et al. Robust object recognition with cortex-like mechanisms. IEEE Trans Pattern Anal Mach Intell, 2007, 29: 411–426

    Article  Google Scholar 

  101. Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nat Neurosci, 1999, 2: 1019–1025

    Article  Google Scholar 

  102. Barlow H B. Vision: a computational investigation into the human representation and processing of visual information. J Math Psychol, 1983, 27: 107–110

    Article  Google Scholar 

  103. Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Machine Intell, 1998, 20: 1254–1259

    Article  Google Scholar 

  104. Miau F, Itti L. A neural model combining attentional orienting to object recognition: preliminary explorations on the interplay between where and what. In: Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2001. 789–792

  105. Walther D, Itti L, Riesenhuber M, et al. Attentional selection for object recognition—a gentle way. In: Proceedings of International Workshop on Biologically Motivated Computer Vision, 2002. 472–479

  106. Qiao H, Li Y L, Tang T, et al. Introducing memory and association mechanism into a biologically inspired visual model. IEEE Trans Cybern, 2013, 44: 1485–1496

    Article  Google Scholar 

  107. Qiao H, Li Y, Li F, et al. Biologically inspired model for visual cognition achieving unsupervised episodic and semantic feature learning. IEEE Trans Cybern, 2015, 46: 2335–2347

    Article  Google Scholar 

  108. Qiao H, Xi X, Li Y, et al. Biologically inspired visual model with preliminary cognition and active attention adjustment. IEEE Trans Cybern, 2014, 45: 2612–2624

    Article  Google Scholar 

  109. Xi X, Yin P, Qiao H, et al. A biologically inspired model mimicking the memory and two distinct pathways of face perception. Neurocomputing, 2016, 205: 349–359

    Article  Google Scholar 

  110. Chung S Y, Lee D D, Sompolinsky H. Classification and geometry of general perceptual manifolds. Phys Rev X, 2018, 8: 031003

    Google Scholar 

  111. Chung S Y, Abbott L F. Neural population geometry: an approach for understanding biological and artificial neural networks. Curr Opin Neurobiol, 2021, 70: 137–144

    Article  Google Scholar 

  112. Seung H S, Lee D D. The manifold ways of perception. Science, 2000, 290: 2268–2269

    Article  Google Scholar 

  113. Singh G, Memoli F, Ishkhanov T, et al. Topological analysis of population activity in visual cortex. J Vision, 2008, 8: 11

    Article  Google Scholar 

  114. Shine J M, Breakspear M, Bell P T, et al. Human cognition involves the dynamic integration of neural activity and neuromodulatory systems. Nat Neurosci, 2019, 22: 289–296

    Article  Google Scholar 

  115. Tenenbaum J B, de Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290: 2319–2323

    Article  Google Scholar 

  116. Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290: 2323–2326

    Article  Google Scholar 

  117. He X, Niyogi P. Locality preserving projections. In: Proceedings of Advances in Neural Information Processing Systems, 2003. 16

  118. He X, Cai D, Yan S, et al. Neighborhood preserving embedding. In: Proceedings of the 10th IEEE International Conference on Computer Vision, 2005. 1208–1213

  119. Kokiopoulou E, Saad Y. Orthogonal neighborhood preserving projections: a projection-based dimensionality reduction technique. IEEE Trans Pattern Anal Mach Intell, 2007, 29: 2143–2156

    Article  Google Scholar 

  120. Pasupathy A, Connor C E. Shape representation in area V4: position-specific tuning for boundary conformation. J Neurophysiol, 2001, 86: 2505–2519

    Article  Google Scholar 

  121. Ito M, Tamura H, Fujita I, et al. Size and position invariance of neuronal responses in monkey inferotemporal cortex. J Neurophysiol, 1995, 73: 218–226

    Article  Google Scholar 

  122. Tovee M J, Rolls E T, Azzopardi P. Translation invariance in the responses to faces of single neurons in the temporal visual cortical areas of the alert macaque. J Neurophysiol, 1994, 72: 1049–1060

    Article  Google Scholar 

  123. Vogels R, Orban G A. Coding of stimulus invariances by inferior temporal neurons. Progress Brain Research, 1996, 112: 195–211

    Article  Google Scholar 

  124. Stanton G B, Bruce C J, Goldberg M E. Topography of projections to posterior cortical areas from the macaque frontal eye fields. J Comp Neurol, 1995, 353: 291–305

    Article  Google Scholar 

  125. Ungerleider L G, Galkin T W, Desimone R, et al. Cortical connections of area V4 in the macaque. Cerebral Cortex, 2008, 18: 477–499

    Article  Google Scholar 

  126. Yamane S, Kaji S, Kawano K. What facial features activate face neurons in the inferotemporal cortex of the monkey? Exp Brain Res, 1988, 73: 209–214

    Article  Google Scholar 

  127. Chatterjee S, Callaway E M. Parallel colour-opponent pathways to primary visual cortex. Nature, 2003, 426: 668–671

    Article  Google Scholar 

  128. Field G D, Sher A, Gauthier J L, et al. Spatial properties and functional organization of small bistratified ganglion cells in primate retina. J Neurosci, 2007, 27: 13261–13272

    Article  Google Scholar 

  129. Danilova M V, Mollon J D. The comparison of spatially separated colours. Vision Res, 2006, 46: 823–836

    Article  Google Scholar 

  130. Kentridge R W, Heywood C A, Weiskrantz L. Color contrast processing in human striate cortex. Proc Natl Acad Sci USA, 2007, 104: 15129–15131

    Article  Google Scholar 

  131. Conway B R. Color vision, cones, and color-coding in the cortex. Neuroscientist, 2009, 15: 274–290

    Article  Google Scholar 

  132. Brown M W, Aggleton J P. Recognition memory: what are the roles of the perirhinal cortex and hippocampus? Nat Rev Neurosci, 2001, 2: 51–61

    Article  Google Scholar 

  133. Squire L R, Wixted J T, Clark R E. Recognition memory and the medial temporal lobe: a new perspective. Nat Rev Neurosci, 2007, 8: 872–883

    Article  Google Scholar 

  134. McElree B, Dolan P O, Jacoby L L. Isolating the contributions of familiarity and source information to item recognition: a time course analysis. J Exp Psychol-Learn Mem Cognition, 1999, 25: 563–582

    Article  Google Scholar 

  135. Seeck M, Michel C M, Mainwaring N, et al. Evidence for rapid face recognition from human scalp and intracranial electrodes. Neuroreport, 1997, 8: 2749–2754

    Article  Google Scholar 

  136. Sakurai Y. Population coding by cell assemblies—what it really is in the brain. Neurosci Res, 1996, 26: 1–16

    Article  Google Scholar 

  137. Hubel D H, Wiesel T N. Receptive fields of single neurones in the cat’s striate cortex. J Physiol, 1959, 148: 574–591

    Article  Google Scholar 

  138. Adelson E H, Bergen J R. Spatiotemporal energy models for the perception of motion. J Opt Soc Am A, 1985, 2: 284–299

    Article  Google Scholar 

  139. Marko H, Giebel H. Recognition of handwritten characters with a system of homogeneous layers. Nachrichtentechnische Zeitschrift, 1970, 23: 455

    Google Scholar 

  140. Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol, 1962, 160: 106–154

    Article  Google Scholar 

  141. Kuffler S W. Discharge patterns and functional organization of mammalian retina. J Neurophysiol, 1953, 16: 37–68

    Article  Google Scholar 

  142. Campbell F W, Robson J G. Application of Fourier analysis to the visibility of gratings. J Physiol, 1968, 197: 551–566

    Article  Google Scholar 

  143. Wertheimer M. Untersuchungen zur Lehre von der Gestalt. Gestalt Theor, 2017, 39: 79–89

    Article  Google Scholar 

  144. Julesz B. Binocular depth perception of computer-generated patterns. Bell Syst Technical J, 1960, 39: 1125–1162

    Article  Google Scholar 

  145. Goodfellow I J, Shlens J, Szegedy C. Explaining and harnessing adversarial examples. 2014. ArXiv:1412.6572

  146. Vukobratović M, Frank A A, Juricić D. On the stability of biped locomotion. IEEE Trans Biomed Eng, 1970, 17: 25–36

    Article  Google Scholar 

  147. Vukobratović M, Borovac B. Zero-moment point—thirty five years of its life. Int J Hum Robot, 2004, 1: 157–173

    Article  Google Scholar 

  148. Kim J Y, Park I W, Oh J H. Experimental realization of dynamic walking of the biped humanoid robot KHR-2 using zero moment point feedback and inertial measurement. Adv Robotics, 2006, 20: 707–736

    Article  Google Scholar 

  149. Urata J, Nshiwaki K, Nakanishi Y, et al. Online walking pattern generation for push recovery and minimum delay to commanded change of direction and speed. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012. 3411–3416

  150. Fu C L, Chen K. Gait synthesis and sensory control of stair climbing for a humanoid robot. IEEE Trans Ind Electron, 2008, 55: 2111–2120

    Article  Google Scholar 

  151. Pratt J, Carff J, Drakunov S, et al. Capture point: a step toward humanoid push recovery. In: Proceedings of the 6th IEEE-RAS International Conference on Humanoid Robots, 2006. 200–207

  152. Pratt J, Koolen T, de Boer T, et al. Capturability-based analysis and control of legged locomotion, Part 2: application to M2V2, a lower-body humanoid. Int J Robot Res, 2012, 31: 1117–1133

    Article  Google Scholar 

  153. Koolen T, de Boer T, Rebula J, et al. Capturability-based analysis and control of legged locomotion, Part 1: theory and application to three simple gait models. Int J Robot Res, 2012, 31: 1094–1113

    Article  Google Scholar 

  154. Miguel-Blanco A, Manoonpong P. General distributed neural control and sensory adaptation for self-organized locomotion and fast adaptation to damage of walking robots. Front Neural Circuits, 2020, 14: 46

    Article  Google Scholar 

  155. Thor M, Kulvicius T, Manoonpong P. Generic neural locomotion control framework for legged robots. IEEE Trans Neural Netw Learn Syst, 2020, 32: 4013–4025

    Article  Google Scholar 

  156. Huang Y, Vanderborght B, van Ham R, et al. Torque-stiffness-controlled dynamic walking with central pattern generators. Biol Cybern, 2014, 108: 803–823

    Article  MathSciNet  Google Scholar 

  157. Huang Q, Dong C, Yu Z, et al. Resistant compliance control for biped robot inspired by humanlike behavior. IEEE ASME Trans Mechatron, 2022, 27: 1–11

    Article  Google Scholar 

  158. Srinivasan M, Ruina A. Computer optimization of a minimal biped model discovers walking and running. Nature, 2006, 439: 72–75

    Article  Google Scholar 

  159. Sinnet R W, Jiang S, Ames A D. A human-inspired framework for bipedal robotic walking design. Int J Biomechatronics Biomedical Robotics, 2014, 3: 20–41

    Article  Google Scholar 

  160. He W, Ge W, Li Y, et al. Model identification and control design for a humanoid robot. IEEE Trans Syst Man Cybern Syst, 2017, 47: 45–57

    Article  Google Scholar 

  161. Vaz J C, Oh P. Model-based suppression control for liquid vessels carried by a humanoid robot while stair-climbing. In: Proceedings of IEEE 16th International Conference on Automation Science and Engineering, 2020. 1540–1545

  162. Levine S, Finn C, Darrell T, et al. End-to-end training of deep visuomotor policies. J Machine Learning Res, 2016, 17: 1334–1373

    MathSciNet  Google Scholar 

  163. Zhang F, Demiris Y. Learning garment manipulation policies toward robot-assisted dressing. Sci Robot, 2022, 7: eabm6010

    Article  Google Scholar 

  164. Silverio J, Calinon S, Rozo L, et al. Learning task priorities from demonstrations. IEEE Trans Robot, 2018, 35: 78–94

    Article  Google Scholar 

  165. Fang B, Jia S, Guo D, et al. Survey of imitation learning for robotic manipulation. Int J Intell Robot Appl, 2019, 3: 362–369

    Article  Google Scholar 

  166. Jiang Z, Xu J, Li H, et al. Stable parking control of a robot astronaut in a space station based on human dynamics. IEEE Trans Robot, 2019, 36: 399–413

    Article  Google Scholar 

  167. Kulić D, Ott C, Lee D, et al. Incremental learning of full body motion primitives and their sequencing through human motion observation. Int J Robot Res, 2012, 31: 330–345

    Article  Google Scholar 

  168. Ficuciello F, Migliozzi A, Laudante G, et al. Vision-based grasp learning of an anthropomorphic hand-arm system in a synergy-based control framework. Sci Robot, 2019, 4: eaao4900

    Article  Google Scholar 

  169. Cui J, Trinkle J. Toward next-generation learned robot manipulation. Sci Robot, 2021, 6: eabd9461

    Article  Google Scholar 

  170. Evarts E V. Relation of pyramidal tract activity to force exerted during voluntary movement. J Neurophysiol, 1968, 31: 14–27

    Article  Google Scholar 

  171. Dum R P, Strick P L. The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci, 1991, 11: 667–689

    Article  Google Scholar 

  172. Georgopoulos A P, Schwartz A B, Kettner R E. Neuronal population coding of movement direction. Science, 1986, 233: 1416–1419

    Article  Google Scholar 

  173. Schwartz A B. Direct cortical representation of drawing. Science, 1994, 265: 540–542

    Article  Google Scholar 

  174. Moran D W, Schwartz A B. Motor cortical representation of speed and direction during reaching. J Neurophysiol, 1999, 82: 2676–2692

    Article  Google Scholar 

  175. Churchland M M, Cunningham J P, Kaufman M T, et al. Neural population dynamics during reaching. Nature, 2012, 487: 51–56

    Article  Google Scholar 

  176. Sussillo D, Churchland M M, Kaufman M T, et al. A neural network that finds a naturalistic solution for the production of muscle activity. Nat Neurosci, 2015, 18: 1025–1033

    Article  Google Scholar 

  177. Russo A A, Bittner S R, Perkins S M, et al. Motor cortex embeds muscle-like commands in an untangled population response. Neuron, 2018, 97: 953–966

    Article  Google Scholar 

  178. Afshar A, Santhanam G, Yu B M, et al. Single-trial neural correlates of arm movement preparation. Neuron, 2011, 71: 555–564

    Article  Google Scholar 

  179. Churchland M M, Cunningham J P, Kaufman M T, et al. Cortical preparatory activity: representation of movement or first cog in a dynamical machine? Neuron, 2010, 68: 387–400

    Article  Google Scholar 

  180. Churchland M M, Yu B M, Ryu S I, et al. Neural variability in premotor cortex provides a signature of motor preparation. J Neurosci, 2006, 26: 3697–3712

    Article  Google Scholar 

  181. Wang X, Chen J, Qiao H. Motion learning and rapid generalization for musculoskeletal systems based on recurrent neural network modulated by initial states. IEEE Trans Cogn Dev Syst, 2021. doi: https://doi.org/10.1109/TCDS.2021.3136854

  182. Qiao H, Li C, Yin P, et al. Human-inspired motion model of upper-limb with fast response and learning ability—a promising direction for robot system and control. Assembly Automation, 2016, 36: 97–107

    Article  Google Scholar 

  183. Capolei M C, Andersen N A, Lund H H, et al. A cerebellar internal models control architecture for online sensorimotor adaptation of a humanoid robot acting in a dynamic environment. IEEE Robot Autom Lett, 2019, 5: 80–87

    Article  Google Scholar 

  184. Mussa-Ivaldi F A, Giszter S F, Bizzi E. Linear combinations of primitives in vertebrate motor control. Proc Natl Acad Sci USA, 1994, 91: 7534–7538

    Article  Google Scholar 

  185. Bizzi E, Mussa-Ivaldi F A, Giszter S. Computations underlying the execution of movement: a biological perspective. Science, 1991, 253: 287–291

    Article  Google Scholar 

  186. Giszter S F, Mussa-Ivaldi F A, Bizzi E. Convergent force fields organized in the frog’s spinal cord. J Neurosci, 1993, 13: 467–491

    Article  Google Scholar 

  187. Georgopoulos A P. New concepts in generation of movement. Neuron, 1994, 13: 257–268

    Article  Google Scholar 

  188. Zhong S, Chen Z, Zhou J. Structure transforming for constructing constraint force field in musculoskeletal robot. Assembly Automation, 2022, 42: 169–180

    Article  Google Scholar 

  189. Hill A V. Length of muscle, and the heat and tension developed in an isometric contraction. J Physiol, 1925, 60: 237–263

    Article  Google Scholar 

  190. Hill A V. The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B, 1938, 126: 136–195

    Article  Google Scholar 

  191. Hill A V. The heat of activation and the heat of shortening in a muscle twitch. Proc R Soc Lond B, 1949, 136: 195–211

    Article  Google Scholar 

  192. Downing A C. The construction of micro-galvanometer systems. J Sci Instrum, 1948, 25: 230–231

    Article  Google Scholar 

  193. Abbott B C, Wilkie D R. The relation between velocity of shortening and the tension-length curve of skeletal muscle. J Physiol, 1953, 120: 214–223

    Article  Google Scholar 

  194. Hatze H. A myocybernetic control model of skeletal muscle. Biol Cybern, 1977, 25: 103–119

    Article  Google Scholar 

  195. Zajac F E. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomedical Eng, 1989, 17: 359–411

    Google Scholar 

  196. van Soest A J, Bobbert M F. The contribution of muscle properties in the control of explosive movements. Biol Cybern, 1993, 69: 195–204

    Article  Google Scholar 

  197. Thelen D G. Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J Biomech Eng, 2003, 125: 70–77

    Article  Google Scholar 

  198. Sommacal L, Melchior P, Cabelguen J M, et al. Fractional multimodels of the gastrocnemius muscle for tetanus pattern. In: Proceedings of Advances in Fractional Calculus, 2007. 271–285

  199. Sommacal L, Melchior P, Oustaloup A, et al. Fractional multi-models of the frog gastrocnemius muscle. J Vib Control, 2008, 14: 1415–1430

    Article  Google Scholar 

  200. Haeufle D F B, Günther M, Bayer A, et al. Hill-type muscle model with serial damping and eccentric force-velocity relation. J Biomech, 2014, 47: 1531–1536

    Article  Google Scholar 

  201. HosseinNia S H, Romero F, Tejado I, et al. Effects of introducing fractional dynamics in Hill’s model for muscle contraction. IFAC Proc Volumes, 2012, 45: 1743–1748

    Article  Google Scholar 

  202. Thelen D G, Anderson F C, Delp S L. Generating dynamic simulations of movement using computed muscle control. J Biomech, 2003, 36: 321–328

    Article  Google Scholar 

  203. d’Avella A, Saltiel P, Bizzi E. Combinations of muscle synergies in the construction of a natural motor behavior. Nat Neurosci, 2003, 6: 300–308

    Article  Google Scholar 

  204. d’Avella A, Fernandez L, Portone A, et al. Modulation of phasic and tonic muscle synergies with reaching direction and speed. J Neurophysiol, 2008, 100: 1433–1454

    Article  Google Scholar 

  205. Overduin S A, d’Avella A, Roh J, et al. Representation of muscle synergies in the primate brain. J Neurosci, 2015, 35: 12615–12624

    Article  Google Scholar 

  206. Wu Y, Chen J, Qiao H. Anti-interference analysis of bio-inspired musculoskeletal robotic system. Neurocomputing, 2021, 436: 114–125

    Article  Google Scholar 

  207. Chen J, Qiao H. Muscle-synergies-based neuromuscular control for motion learning and generalization of a musculoskeletal system. IEEE Trans Syst Man Cybern Syst, 2021, 51: 3993–4006

    Article  Google Scholar 

  208. Venture G, Laumond J P, Watier B. Biomechanics of Anthropomorphic Systems. Berlin: Springer, 2019

    Book  Google Scholar 

  209. Saeedvand S, Jafari M, Aghdasi H S, et al. A comprehensive survey on humanoid robot development. Knowledge Eng Rev, 2019, 34: e20

    Article  Google Scholar 

  210. Atkeson C G, Hale J G, Pollick F, et al. Using humanoid robots to study human behavior. IEEE Intell Syst, 2000, 15: 46–56

    Article  Google Scholar 

  211. Gouaillier D, Hugel V, Blazevic P, et al. Mechatronic design of NAO humanoid. In: Proceedings of 2009 IEEE International Conference on Robotics and Automation, 2009. 769–774

  212. Kaneko K, Kanehiro F, Morisawa M, et al. Humanoid robot HRP-4-humanoid robotics platform with lightweight and slim body. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011. 4400–4407

  213. Jung T, Lim J, Bae H, et al. Development of the humanoid disaster response platform DRC-HUBO+. IEEE Trans Robot, 2018, 34: 1–17

    Article  Google Scholar 

  214. Fukuda T, Dario P, Yang G Z. Humanoid robotics—History, current state of the art, and challenges. Sci Robot, 2017, 2: eaar4043

    Article  Google Scholar 

  215. Sakagami Y, Watanabe R, Aoyama C, et al. The intelligent ASIMO: system overview and integration. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002. 2478–2483

  216. Huang Q, Yokoi K, Kajita S, et al. Planning walking patterns for a biped robot. IEEE Trans Robot Automat, 2001, 17: 280–289

    Article  Google Scholar 

  217. Diftler M A, Mehling J, Abdallah M E, et al. Robonaut 2-the first humanoid robot in space. In: Proceedings of IEEE International Conference on Robotics and Automation, 2011. 2178–2183

  218. Metta G, Natale L, Nori F, et al. The iCub humanoid robot: an open-systems platform for research in cognitive development. Neural Networks, 2010, 23: 1125–1134

    Article  Google Scholar 

  219. Kuindersma S, Deits R, Fallon M, et al. Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot. Auton Robot, 2016, 40: 429–455

    Article  Google Scholar 

  220. Hwang K, Lee S W, Karng S W, et al. Thermal performance of non-metallic two-phase cold plates for humanoid robot cooling. In: Proceedings of the 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2008. 6–11

  221. Hochberg U, Dietsche A, Dorer K. Evaporative cooling of actuators for humanoid robots. In: Proceedings of the 8th Workshop on Humanoid Soccer Robots, IEEE-RAS International Conference on Humanoid Robots, Atlanta, 2013

  222. Schnekenburger F, Scharffenberg M, Wülker M, et al. Detection and localization of features on a soccer field with feedforward fully convolutional neural networks (FCNN) for the adultsize humanoid robot sweaty. In: Proceedings of the 12th Workshop on Humanoid Soccer Robots, IEEE-RAS International Conference on Humanoid Robots, Birmingham, 2017

  223. Guizzo E, Ackerman E. The hard lessons of DARPA’s robotics challenge. IEEE Spectr, 2015, 52: 11–13

    Article  Google Scholar 

  224. Rus D, Tolley M T. Design, fabrication and control of soft robots. Nature, 2015, 521: 467–475

    Article  Google Scholar 

  225. Qiao H, Chen J, Huang X. A survey of brain-inspired intelligent robots: integration of vision, decision, motion control, and musculoskeletal systems. IEEE Trans Cybern, 2022, 52: 11267–11280

    Article  Google Scholar 

  226. Zhong S, Chen J, Niu X, et al. Reducing redundancy of musculoskeletal robot with convex hull vertexes selection. IEEE Trans Cogn Dev Syst, 2020, 12: 601–617

    Article  Google Scholar 

  227. Romero F, Alonso F J. A comparison among different Hill-type contraction dynamics formulations for muscle force estimation. Mech Sci, 2016, 7: 19–29

    Article  Google Scholar 

  228. Millard M, Uchida T, Seth A, et al. Flexing computational muscle: modeling and simulation of musculotendon dynamics. J Biomech Eng, 2013, 135: 021005

    Article  Google Scholar 

  229. Hosoda K, Sakaguchi Y, Takayama H, et al. Pneumatic-driven jumping robot with anthropomorphic muscular skeleton structure. Auton Robot, 2010, 28: 307–316

    Article  Google Scholar 

  230. Acome E, Mitchell S K, Morrissey T G, et al. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science, 2018, 359: 61–65

    Article  Google Scholar 

  231. Kellaris N, Venkata V G, Smith G M, et al. Peano-HASEL actuators: muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Sci Robot, 2018, 3: eaar3276

    Article  Google Scholar 

  232. Thoroughman K A, Shadmehr R. Learning of action through adaptive combination of motor primitives. Nature, 2000, 407: 742–747

    Article  Google Scholar 

  233. Jäntsch M, Schmaler C, Wittmeier S, et al. A scalable joint-space controller for musculoskeletal robots with spherical joints. In: Proceedings of IEEE International Conference on Robotics and Biomimetics, 2011. 2211–2216

  234. Jäntsch M, Wittmeier S, Dalamagkidis K, et al. Adaptive neural network dynamic surface control: an evaluation on the musculoskeletal robot Anthrob. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2015. 4347–4352

  235. Kawaharazuka K, Kawamura M, Makino S, et al. Antagonist inhibition control in redundant tendon-driven structures based on human reciprocal innervation for wide range limb motion of musculoskeletal humanoids. IEEE Robot Autom Lett, 2017, 2: 2119–2126

    Article  Google Scholar 

  236. Stanev D, Moustakas K. Simulation of constrained musculoskeletal systems in task space. IEEE Trans Biomed Eng, 2017, 65: 307–318

    Google Scholar 

  237. Nakada M, Zhou T, Chen H, et al. Deep learning of biomimetic sensorimotor control for biomechanical human animation. ACM Trans Graph, 2018, 37: 1–15

    Article  Google Scholar 

  238. Kidziński Ł, Mohanty S P, Ong C F, et al. Learning to run challenge: synthesizing physiologically accurate motion using deep reinforcement learning. In: The NIPS’17 Competition: Building Intelligent Systems. Cham: Springer, 2018. 101–120

    Google Scholar 

  239. Kidziński Ł, Mohanty S P, Ong C F, et al. Learning to run challenge solutions: adapting reinforcement learning methods for neuromusculoskeletal environments. In: The NIPS’17 Competition: Building Intelligent Systems. Cham: Springer, 2018. 121–153

    Google Scholar 

  240. Zhou J, Chen J, Deng H, et al. From rough to precise: human-inspired phased target learning framework for redundant musculoskeletal systems. Front Neurorobot, 2019, 13: 61

    Article  Google Scholar 

  241. Kidziński Ł, Ong C, Mohanty S P, et al. Artificial intelligence for prosthetics: challenge solutions. In: The NeurIPS’18 Competition. Cham: Springer, 2020. 69–128

    Google Scholar 

Download references

Acknowledgements

This work was supported by Major Project of Science and Technology Innovation 2030—Brain Science and Brain-Inspired Intelligence (Grant No. 2021ZD0200408), National Natural Science Foundation of China (Grant Nos. 91948303, 62203443), Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB32050100), Science Foundation for Youth of the State Key Laboratory of Management and Control for Complex System (Grant No. 2022QN09). The authors would like to thank Jie GAO, Zhengyu LIU, Chaojing YAO, Yaxiong WU, and Peijie YIN for their help in suggestions and writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Qiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, H., Zhong, S., Chen, Z. et al. Improving performance of robots using human-inspired approaches: a survey. Sci. China Inf. Sci. 65, 221201 (2022). https://doi.org/10.1007/s11432-022-3606-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3606-1

Keywords

Navigation