Skip to main content
Log in

High-dimensional quantum information processing on programmable integrated photonic chips

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This study reviews the recent progress of high-dimensional quantum information processing with photons. We first introduce the basic language of high-dimensional quantum information, including the representation of quantum dits (qudits), unitary operations of qudit states, and the general format of quantum algorithms with qudits. We discuss experimental implementations of high-dimensional quantum information processing and quantum computing in photonic systems, particularly in integrated quantum photonic platforms. We also discuss how qudit-based quantum photonic devices and systems can be adopted for further improving qubit-based quantum computation and quantum simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giustina M, Versteegh M A M, Wengerowsky S, et al. Significant-loophole-free test of Bell’s theorem with entangled photons. Phys Rev Lett, 2015, 115: 250401

    Article  Google Scholar 

  2. Shalm L K, Meyer-Scott E, Christensen B G, et al. Strong loophole-free test of local realism. Phys Rev Lett, 2015, 115: 250402

    Article  Google Scholar 

  3. Liao S K, Cai W Q, Liu W Y, et al. Satellite-to-ground quantum key distribution. Nature, 2017, 549: 43–47

    Article  Google Scholar 

  4. Chen Y A, Zhang Q, Chen T Y, et al. An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature, 2021, 589: 214–219

    Article  Google Scholar 

  5. Arute F, Arya K, Babbush R, et al. Quantum supremacy using a programmable superconducting processor. Nature, 2019, 574: 505–510

    Article  Google Scholar 

  6. Zhong H S, Deng Y H, Qin J, et al. Phase-programmable Gaussian boson sampling using stimulated squeezed light. Phys Rev Lett, 2021, 127: 180502

    Article  Google Scholar 

  7. Erhard M, Krenn M, Zeilinger A. Advances in high-dimensional quantum entanglement. Nat Rev Phys, 2020, 2: 365–381

    Article  Google Scholar 

  8. Cozzolino D, da Lio B, Bacco D, et al. High-dimensional quantum communication: benefits, progress, and future challenges. Adv Quantum Tech, 2019, 2: 1900038

    Article  Google Scholar 

  9. Babazadeh A, Erhard M, Wang F, et al. High-dimensional single-photon quantum gates: concepts and experiments. Phys Rev Lett, 2017, 119: 180510

    Article  Google Scholar 

  10. Hu X M, Zhang C, Liu B H, et al. Experimental high-dimensional quantum teleportation. Phys Rev Lett, 2020, 125: 230501

    Article  Google Scholar 

  11. Collins D, Gisin N, Linden N, et al. Bell inequalities for arbitrarily high-dimensional systems. Phys Rev Lett, 2002, 88: 040404

    Article  MathSciNet  MATH  Google Scholar 

  12. Vértesi T, Pironio S, Brunner N. Closing the detection loophole in Bell experiments using qudits. Phys Rev Lett, 2010, 104: 060401

    Article  Google Scholar 

  13. Cerf N J, Bourennane M, Karlsson A, et al. Security of quantum key distribution using d-level systems. Phys Rev Lett, 2002, 88: 127902

    Article  Google Scholar 

  14. Islam N T, Lim C C W, Cahall C, et al. Provably secure and high-rate quantum key distribution with time-bin qudits. Sci Adv, 2017, 3: e170149

    Article  Google Scholar 

  15. Campbell E T. Enhanced fault-tolerant quantum computing in d-level systems. Phys Rev Lett, 2014, 113: 230501

    Article  Google Scholar 

  16. Bocharov A, Roetteler M, Svore K M. Factoring with qutrits: Shor’s algorithm on ternary and metaplectic quantum architectures. Phys Rev A, 2017, 96: 012306

    Article  Google Scholar 

  17. Gokhale P, Baker J M, Duckering C, et al. Asymptotic improvements to quantum circuits via qutrits. In: Proceedings of the 46th International Symposium on Computer Architecture, 2019. 554–566

  18. Wang D S, Stephen D T, Raussendorf R. Qudit quantum computation on matrix product states with global symmetry. Phys Rev A, 2017, 95: 032312

    Article  MathSciNet  Google Scholar 

  19. Luo M X, Wang X J. Universal quantum computation with qudits. Sci China-Phys Mech Astron, 2014, 57: 1712–1717

    Article  Google Scholar 

  20. Wang Y C, Hu Z X, Sanders B C, et al. Qudits and high-dimensional quantum computing. Front Phys, 2020, 8: 479

    Article  Google Scholar 

  21. Zhou D L, Zeng B, Xu Z, et al. Quantum computation based on d-level cluster state. Phys Rev A, 2003, 68: 062303

    Article  Google Scholar 

  22. Wei T C, Affleck I, Raussendorf R. Affleck-Kennedy-Lieb-Tasaki state on a honeycomb lattice is a universal quantum computational resource. Phys Rev Lett, 2011, 106: 070501

    Article  MathSciNet  Google Scholar 

  23. Paesani S, Bulmer J F F, Jones A E, et al. Scheme for universal high-dimensional quantum computation with linear optics. Phys Rev Lett, 2021, 126: 230504

    Article  Google Scholar 

  24. Zobov V E, Ermilov A S. Implementation of a quantum adiabatic algorithm for factorization on two qudits. J Exp Theor Phys, 2012, 114: 923–932

    Article  Google Scholar 

  25. Amin M H S, Dickson N G, Smith P. Adiabatic quantum optimization with qudits. Quantum Inf Process, 2013, 12: 1819–1829

    Article  MathSciNet  MATH  Google Scholar 

  26. Reimer C, Sciara S, Roztocki P, et al. High-dimensional one-way quantum processing implemented on d-level cluster states. Nat Phys, 2019, 15: 148–153

    Article  Google Scholar 

  27. Imany P, Jaramillo-Villegas J A, Alshaykh M S, et al. High-dimensional optical quantum logic in large operational spaces. NPJ Quantum Inf, 2019, 5: 59

    Article  Google Scholar 

  28. Ringbauer M, Meth M, Postler L, et al. A universal qudit quantum processor with trapped ions. Nat Phys, 2022, 18: 1053–1057

    Article  Google Scholar 

  29. Cervera-Lierta A, Krenn M, Aspuru-Guzik A, et al. Experimental high-dimensional Greenberger-Horne-Zeilinger entanglement with superconducting transmon qutrits. Phys Rev Appl, 2022, 17: 024062

    Article  Google Scholar 

  30. Blok M S, Ramasesh V V, Schuster T, et al. Quantum information scrambling on a superconducting qutrit processor. Phys Rev X, 2021, 11: 021010

    Google Scholar 

  31. Choi S, Choi J, Landig R, et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature, 2017, 543: 221–225

    Article  Google Scholar 

  32. Wang J W, Paesani S, Ding Y H, et al. Multidimensional quantum entanglement with large-scale integrated optics. Science, 2018, 360: 285–291

    Article  MathSciNet  MATH  Google Scholar 

  33. Li L, Liu Z X, Ren X F, et al. Metalens-array-based high-dimensional and multiphoton quantum source. Science, 2020, 368: 1487–1490

    Article  Google Scholar 

  34. Kues M, Reimer C, Roztocki P, et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 2017, 546: 622–626

    Article  Google Scholar 

  35. Kues M, Reimer C, Lukens J M, et al. Quantum optical microcombs. Nat Photon, 2019, 13: 170–179

    Article  Google Scholar 

  36. Dada A C, Leach J, Buller G S, et al. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat Phys, 2011, 7: 677–680

    Article  Google Scholar 

  37. Feng L T, Zhang M, Zhou Z Y, et al. On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom. Nat Commun, 2016, 7: 11985

    Article  Google Scholar 

  38. Mohanty A, Zhang M, Dutt A, et al. Quantum interference between transverse spatial waveguide modes. Nat Commun, 2017, 8: 14010

    Article  Google Scholar 

  39. Wang J, Sciarrino F, Laing A, et al. Integrated photonic quantum technologies. Nat Photon, 2019, 14: 273–284

    Article  Google Scholar 

  40. Elshaari A W, Pernice W, Srinivasan K, et al. Hybrid integrated quantum photonic circuits. Nat Photon, 2020, 14: 285–298

    Article  Google Scholar 

  41. Pelucchi E, Fagas G, Aharonovich I, et al. The potential and global outlook of integrated photonics for quantum technologies. Nat Rev Phys, 2022, 4: 194–208

    Article  Google Scholar 

  42. Brylinski J L, Brylinski R. Universal quantum gates. In: Mathematics of Quantum Computation. Boca Raton: Chapman and Hall/CRC, 2002. 117–134

    MATH  Google Scholar 

  43. Patera J, Zassenhaus H. The Pauli matrices in n dimensions and finest gradings of simple Lie algebras of type J Math Phys, 1988, 29: 665–673

    Article  MathSciNet  MATH  Google Scholar 

  44. Cereceda J L. Generalization of the Deutsch algorithm using two qudits. 2004. ArXiv:quant-ph/0407253

  45. Muthukrishnan A, Stroud C R J. Multivalued logic gates for quantum computation. Phys Rev A, 2000, 62: 052309

    Article  MathSciNet  Google Scholar 

  46. Di Y M, Wei H R. Synthesis of multivalued quantum logic circuits by elementary gates. Phys Rev A, 2013, 87: 012325

    Article  Google Scholar 

  47. Long G L. General quantum interference principle and duality computer. Commun Theor Phys, 2006, 45: 825–844

    Article  MathSciNet  Google Scholar 

  48. Wei S-J, Wang T, Ruan D, et al. Quantum computing. Sci Sin Inform, 2017, 47: 1277–1299

    Article  Google Scholar 

  49. Childs A M, Wiebe N. Hamiltonian simulation using linear combinations of unitary operations. 2012. ArXiv:1202.5822

  50. Berry D W, Childs A M, Cleve R, et al. Simulating Hamiltonian dynamics with a truncated Taylor series. Phys Rev Lett, 2015, 114: 090502

    Article  Google Scholar 

  51. Wei S J, Ruan D, Long G L. Duality quantum algorithm efficiently simulates open quantum systems. Sci Rep, 2016, 6: 30727

    Article  Google Scholar 

  52. Wei S J, Long G L. Duality quantum computer and the efficient quantum simulations. Quantum Inf Process, 2016, 15: 1189–1212

    Article  MathSciNet  MATH  Google Scholar 

  53. Zheng C. Duality quantum simulation of a general parity-time-symmetric two-level system. EPL, 2018, 123: 40002

    Article  Google Scholar 

  54. Qiang X G, Zhou X Q, Aungskunsiri K, et al. Quantum processing by remote quantum control. Quantum Sci Technol, 2017, 2: 045002

    Article  Google Scholar 

  55. Wei S J, Zhou Z R, Ruan D, et al. Realization of the algorithm for system of linear equations in duality quantum computing. In: Proceedings of IEEE 85th Vehicular Technology Conference (VTC Spring), 2017. 1–4

  56. Zheng C, Wei S J. Duality quantum simulation of the Yang-Baxter equation. Int J Theor Phys, 2018, 57: 2203–2212

    Article  MathSciNet  MATH  Google Scholar 

  57. Marshman R J, Lund A P, Rohde P P, et al. Passive quantum error correction of linear optics networks through error averaging. Phys Rev A, 2018, 97: 022324

    Article  Google Scholar 

  58. Nielsen M A, Chuang I. Quantum computation and quantum information. Am J Phys, 2002, 70: 558

    Article  Google Scholar 

  59. Mohseni M, Rezakhani A T, Lidar D A. Quantum-process tomography: resource analysis of different strategies. Phys Rev A, 2008, 77: 032322

    Article  Google Scholar 

  60. Riofrío C A, Gross D, Flammia S T, et al. Experimental quantum compressed sensing for a seven-qubit system. Nat Commun, 2017, 8: 15305

    Article  Google Scholar 

  61. Bavaresco J, Valencia N H, Klöckl C, et al. Measurements in two bases are sufficient for certifying high-dimensional entanglement. Nat Phys, 2018, 14: 1032–1037

    Article  Google Scholar 

  62. Hofmann H F. Complementary classical fidelities as an efficient criterion for the evaluation of experimentally realized quantum operations. Phys Rev Lett, 2005, 94: 160504

    Article  MathSciNet  Google Scholar 

  63. Adcock J C, Bao J M, Chi Y L, et al. Advances in silicon quantum photonics. IEEE J Sel Top Quantum Electron, 2020, 27: 1–24

    Article  Google Scholar 

  64. Reck M, Zeilinger A, Bernstein H J, et al. Experimental realization of any discrete unitary operator. Phys Rev Lett, 1994, 73: 58

    Article  Google Scholar 

  65. Clements W R, Humphreys P C, Metcalf B J, et al. Optimal design for universal multiport interferometers. Optica, 2016, 3: 1460–1465

    Article  Google Scholar 

  66. Chi Y L, Huang J S, Zhang Z C, et al. A programmable qudit-based quantum processor. Nat Commun, 2022, 13: 1166

    Article  Google Scholar 

  67. Knill E, Laflamme R, Milburn G J. A scheme for efficient quantum computation with linear optics. Nature, 2001, 409: 46–52

    Article  Google Scholar 

  68. Silverstone J W. Entangled light in silicon waveguides. Dissertation for Ph.D. Degree. Bristol: University of Bristol, 2015. 121–124

    Google Scholar 

  69. Gao X Q, Erhard M, Zeilinger A, et al. Computer-inspired concept for high-dimensional multipartite quantum gates. Phys Rev Lett, 2020, 125: 050501

    Article  MathSciNet  Google Scholar 

  70. Malik M, Erhard M, Huber M, et al. Multi-photon entanglement in high dimensions. Nat Photon, 2016, 10: 248–252

    Article  Google Scholar 

  71. Erhard M, Malik M, Krenn M, et al. Experimental Greenberger-Horne-Zeilinger entanglement beyond qubits. Nat Photon, 2018, 12: 759–764

    Article  Google Scholar 

  72. Adcock J C, Vigliar C, Santagati R, et al. Programmable four-photon graph states on a silicon chip. Nat Commun, 2019, 10: 1–6

    Article  Google Scholar 

  73. Raussendorf R, Browne D E, Briegel H J. Measurement-based quantum computation on cluster states. Phys Rev A, 2003, 68: 022312

    Article  Google Scholar 

  74. Lanyon B P, Barbieri M, Almeida M P, et al. Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat Phys, 2009, 5: 134–140

    Article  Google Scholar 

  75. Zhou X Q, Ralph T C, Kalasuwan P, et al. Adding control to arbitrary unknown quantum operations. Nat Commun, 2011, 2: 413

    Article  Google Scholar 

  76. Patel R B, Ho J, Ferreyrol F, et al. A quantum Fredkin gate. Sci Adv, 2016, 2: e1501531

    Article  Google Scholar 

  77. Wang J W, Paesani S, Santagati R, et al. Experimental quantum Hamiltonian learning. Nat Phys, 2017, 13: 551–555

    Article  Google Scholar 

  78. Wiebe N, Granade C, Ferrie C, et al. Hamiltonian learning and certification using quantum resources. Phys Rev Lett, 2014, 112: 190501

    Article  Google Scholar 

  79. Khaneja N, Glaser S J. Cartan decomposition of SU(2n) and control of spin systems. Chem Phys, 2001, 267: 11–23

    Article  Google Scholar 

  80. Qiang X G, Zhou X Q, Wang J W, et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat Photon, 2018, 12: 534–539

    Article  Google Scholar 

  81. Vigliar C, Paesani S, Ding Y H, et al. Error-protected qubits in a silicon photonic chip. Nat Phys, 2021, 17: 1137–1143

    Article  Google Scholar 

  82. Fan Y. A generalization of the Deutsch-Jozsa algorithm to multi-valued quantum logic. In: Proceedings of the 37th International Symposium on Multiple-Valued Logic (ISMVL’07), 2007. 12

  83. Bernstein E, Vazirani U. Quantum complexity theory. SIAM J Comput, 1997, 26: 1411–1473

    Article  MathSciNet  MATH  Google Scholar 

  84. Aspuru-Guzik A, Dutoi A D, Love P J, et al. Simulated quantum computation of molecular energies. Science, 2005, 309: 1704–1707

    Article  Google Scholar 

  85. Shor P W. Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, 1994. 124–134

  86. Kitaev A Y. Quantum measurements and the Abelian stabilizer problem. 2016. ArXiv:quant-ph/9511026

  87. Griffiths R B, Niu C S. Semiclassical Fourier transform for quantum computation. Phys Rev Lett, 1996, 76: 3228–3231

    Article  Google Scholar 

  88. Parker S, Plenio M B. Efficient factorization with a single pure qubit and logN mixed qubits. Phys Rev Lett, 2000, 85: 3049–3052

    Article  Google Scholar 

  89. Dobšíček M, Johansson G, Shumeiko V, et al. Arbitrary accuracy iterative quantum phase estimation algorithm using a single ancillary qubit: a two-qubit benchmark. Phys Rev A, 2007, 76: 030306

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Innovation Program for Quantum Science and Technology (Grant No. 2021-ZD0301500), National Key R&D Program of China (Grant No. 2019-YFA0308702), National Natural Science Foundation of China (Grant No. 61975001), Beijing Natural Science Foundation (Grant No. Z190005), and Key R&D Program of Guangdong Province (Grant No. 2018-B030329001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, Y., Yu, Y., Gong, Q. et al. High-dimensional quantum information processing on programmable integrated photonic chips. Sci. China Inf. Sci. 66, 180501 (2023). https://doi.org/10.1007/s11432-022-3602-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3602-0

Keywords

Navigation