Skip to main content
Log in

Wide-beam SAR autofocus based on blind resampling

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Long synthetic aperture time and large instantaneous beam can turn airborne synthetic aperture radar (SAR) autofocus into a wide-beam autofocus problem; i.e., the motion error is both range- and azimuth-spatial variant. A typical two-step MoCo method cannot process wide-beam airborne SAR data. Moreover, traditional wide-beam SAR MoCo algorithms, such as sub-aperture topography and aperture-dependent (SATA), precise topography- and aperture-dependent (PTA), and frequency division (FD), are highly dependent on high-precision inertial navigation system/global positioning system (INS/GPS) data and belong to the sub-aperture method, which may result in serious grant-lobe or stitching problems in the image. Alternatively, this article proposes a full-aperture autofocus method for wide-beam SAR based on blind RS. The proposed method does not require INS/GPS data and avoids the problems of traditional sub-aperture methods, which can significantly improve the overall image quality. The measured data processing results of the wide-beam SAR verify the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Fan B K, Ding Z G, Gao W B, et al. An improved motion compensation method for high resolution UAV SAR imaging. Sci China Inf Sci, 2014, 57: 122301

    Article  Google Scholar 

  2. Chen J L, Xing M D, Yu H W, et al. Motion compensation/autofocus in airborne synthetic aperture radar: a review. IEEE Geosci Remote Sens Mag, 2022, 10: 185–206

    Article  Google Scholar 

  3. Ji Y F, Dong Z, Zhang Y S, et al. Extended scintillation phase gradient autofocus in future spaceborne P-band SAR mission. Sci China Inf Sci, 2021, 64: 212303

    Article  Google Scholar 

  4. Shao S, Zhang L, Liu H W, et al. Spatial-variant contrast maximization autofocus algorithm for ISAR imaging of maneuvering targets. Sci China Inf Sci, 2019, 62: 040303

    Article  Google Scholar 

  5. Ji Y F, Dong Z, Zhang Y S, et al. Measuring ionospheric scintillation parameters from SAR images using phase gradient autofocus: a case study. IEEE Trans Geosci Remote Sens, 2022, 60: 1–12

    Google Scholar 

  6. Fornaro G, Franceschetti G, Perna S. On center-beam approximation in SAR motion compensation. IEEE Geosci Remote Sens Lett, 2016, 3: 276–280

    Article  Google Scholar 

  7. de Macedo K A C, Scheiber R. Precise topography- and aperture-dependent motion compensation for airborne SAR. IEEE Geosci Remote Sens Lett, 2005, 2: 172–176

    Article  Google Scholar 

  8. Moreira A, Huang Y H. Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation. IEEE Trans Geosci Remote Sens, 1994, 32: 1029–1040

    Article  Google Scholar 

  9. Prats P, de Macedo K A C, Reigber A, et al. Comparison of topography- and aperture-dependent motion compensation algorithms for airborne SAR. IEEE Geosci Remote Sens Lett, 2007, 4: 349–353

    Article  Google Scholar 

  10. Zhang L, Wang G Y, Qiao Z J, et al. Azimuth motion compensation with improved subaperture algorithm for airborne SAR imaging. IEEE J Sel Top Appl Earth Observations Remote Sens, 2017, 10: 184–193

    Article  Google Scholar 

  11. Lu Q R, Gao Y S, Huang P H, et al. Range- and aperture-dependent motion compensation based on precise frequency division and chirp scaling for synthetic aperture radar. IEEE Sens J, 2019, 19: 1435–1442

    Article  Google Scholar 

  12. Wang G Y, Zhang L, Li J, et al. Precise aperture-dependent motion compensation for high-resolution synthetic aperture radar imaging. IET Radar Sonar Navigation, 2017, 11: 204–211

    Article  Google Scholar 

  13. Wong F H, Cumming I G, Neo Y L. Focusing bistatic SAR data using the nonlinear chirp scaling algorithm. IEEE Trans Geosci Remote Sens, 2008, 46: 2493–2505

    Article  Google Scholar 

  14. Li Z Y, Xing M D, Liang Y, et al. A frequency-domain imaging algorithm for highly squinted SAR mounted on maneuvering platforms with nonlinear trajectory. IEEE Trans Geosci Remote Sens, 2016, 54: 4023–4038

    Article  Google Scholar 

  15. Chen J L, Sun G C, Xing M D, et al. Focusing improvement of curved trajectory spaceborne SAR based on optimal LRWC preprocessing and 2-D singular value decomposition. IEEE Trans Geosci Remote Sens, 2019, 57: 4246–4258

    Article  Google Scholar 

  16. Gao Y X, Xing M D, Zhang Z J, et al. ISAR imaging and cross-range scaling for maneuvering targets by using the NCS-NLS algorithm. IEEE Sens J, 2019, 19: 4889–4897

    Article  Google Scholar 

  17. Chen J L, Xing M D, Sun G C, et al. A 2-D space-variant motion estimation and compensation method for ultrahigh-resolution airborne stepped-frequency SAR with long integration time. IEEE Trans Geosci Remote Sens, 2017, 55: 6390–6401

    Article  Google Scholar 

  18. Mao X H, He X L, Li D Q. Knowledge-aided 2-D autofocus for spotlight SAR range migration algorithm imagery. IEEE Trans Geosci Remote Sens, 2018, 56: 5458–5470

    Article  Google Scholar 

  19. Chen J L, Liang B G, Yang D G, et al. Two-step accuracy improvement of motion compensation for airborne SAR with ultrahigh resolution and wide swath. IEEE Trans Geosci Remote Sens, 2019, 57: 7148–7160

    Article  Google Scholar 

  20. Prats P, Scheiber R, Mittermayer J, et al. Processing of sliding spotlight and TOPS SAR data using baseband azimuth scaling. IEEE Trans Geosci Remote Sens, 2010, 48: 770–780

    Article  Google Scholar 

  21. Lin H, Chen J L, Xing M D, et al. Time-domain autofocus for ultrahigh resolution SAR based on azimuth scaling transformation. IEEE Trans Geosci Remote Sens, 2022, 60: 1–12

    Google Scholar 

  22. Neo Y L, Wong F H, Cumming I G. A two-dimensional spectrum for bistatic SAR processing using series reversion. IEEE Geosci Remote Sens Lett, 2017, 4: 93–96

    Article  Google Scholar 

  23. Chen J L, Zhang J C, Liang B G, et al. A general method of series reversion for synthetic aperture radar imaging. IEEE Geosci Remote Sens Lett, 2022, 19: 1–5

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 62271510), and in part by Natural Science Foundation of Hunan Province (Grant No. 2021JJ40781).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanwen Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Yu, H. Wide-beam SAR autofocus based on blind resampling. Sci. China Inf. Sci. 66, 140304 (2023). https://doi.org/10.1007/s11432-022-3574-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3574-7

Keywords

Navigation