Skip to main content
Log in

Broad learning system based on the quantized minimum error entropy criterion

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The broad learning system (BLS) based on the minimum mean square error (MMSE) criterion can achieve outstanding performance without spending too much time in various machine learning tasks. However, when data are polluted by non-Gaussian noise, the stability of BLS may be destroyed because the MMSE criterion is sensitive to outliers. Different from the MMSE criterion, the minimum error entropy (MEE) criterion utilizes the kernel function to capture high-dimensional information and decrease the negative influence of outliers, which will make BLS more discriminative and robust. Nevertheless, the computational complexity of MEE is high due to a double summation of the data size. To solve these issues, this paper proposes a new robust BLS variant based on the quantized minimum error entropy (QMEE) criterion, in which a quantization operation is used to reduce the computational complexity of MEE. The proposed model BLS-QMEE is optimized by the fixed-point iterative method, and a sufficient condition for its convergence is provided. Compared with the standard BLS and other existing robust variants of BLS, BLS-QMEE performs more satisfactorily without consuming too much time. The desirable performance of BLS-QMEE is verified by various experiments on function approximation, several public datasets, and a practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deng L, Yu D. Deep learning: methods and applications. Found Trends Signal, 2014, 7: 197–387

    Article  MathSciNet  Google Scholar 

  2. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521: 436–444

    Article  Google Scholar 

  3. Leung H, Haykin S. The complex backpropagation algorithm. IEEE Trans Signal Process, 1991, 39: 2101–2104

    Article  Google Scholar 

  4. Chen C L P, Liu Z. Broad learning system: an effective and efficient incremental learning system without the need for deep architecture. IEEE Trans Neural Netw Learn Syst, 2017, 29: 10–24

    Article  MathSciNet  Google Scholar 

  5. Chen C L P, Liu Z, Feng S. Universal approximation capability of broad learning system and its structural variations. IEEE Trans Neural Netw Learn Syst, 2018, 30: 1191–1204

    Article  MathSciNet  Google Scholar 

  6. Hoerl A E, Kennard R W. Ridge regression: biased estimation for nonorthogonal problems. Technometrics, 1970, 12: 55–67

    Article  Google Scholar 

  7. Gong X, Zhang T, Chen C L P, et al. Research review for broad learning system: algorithms, theory, and applications. IEEE Trans Cybern, 2022, 52: 8922–8950

    Article  Google Scholar 

  8. Jin J, Li Y, Yang T, et al. Discriminative group-sparsity constrained broad learning system for visual recognition. Inf Sci, 2021, 576: 800–818

    Article  MathSciNet  Google Scholar 

  9. Sheng B, Li P, Zhang Y, et al. GreenSea: visual soccer analysis using broad learning system. IEEE Trans Cybern, 2020, 51: 1463–1477

    Article  Google Scholar 

  10. Jin J W, Liu Z L, Chen C L P. Discriminative graph regularized broad learning system for image recognition. Sci China Inf Sci, 2018, 61: 112209

    Article  Google Scholar 

  11. Wang Y, Jia P, Cui H, et al. A novel regression prediction method for electronic nose based on broad learning system. IEEE Sens J, 2021, 21: 19374–19381

    Article  Google Scholar 

  12. Zhang D, Li T S, Chen C L P, et al. Target tracking algorithm based on a broad learning system. Sci China Inf Sci, 2022, 65: 154201

    Article  Google Scholar 

  13. Yu W, Zhao C. Broad convolutional neural network based industrial process fault diagnosis with incremental learning capability. IEEE Trans Ind Electron, 2019, 67: 5081–5091

    Article  Google Scholar 

  14. Lin J, Liu Z, Chen C L P, et al. Three-domain fuzzy wavelet broad learning system for tremor estimation. Knowledge-Based Syst, 2020, 192: 105295

    Article  Google Scholar 

  15. Liu Z, Chen C L P, Feng S, et al. Stacked broad learning system: from incremental flatted structure to deep model. IEEE Trans Syst Man Cybern Syst, 2020, 51: 209–222

    Article  Google Scholar 

  16. Ye H, Li H, Chen C L P. Adaptive deep cascade broad learning system and its application in image denoising. IEEE Trans Cybern, 2020, 51: 4450–4463

    Article  Google Scholar 

  17. Guo D N, Wu Y H, Shitz S S, et al. Estimation in Gaussian noise: properties of the minimum mean-square error. IEEE Trans Inform Theor, 2011, 57: 2371–2385

    Article  MathSciNet  Google Scholar 

  18. Hampel F R, Ronchetti E M, Rousseeuw P J, et al. Robust Statistics: The Approach Based on Influence Functions. Hoboken: John Wiley & Sons, 2011

    Google Scholar 

  19. Jin J W, Chen C L P. Regularized robust broad learning system for uncertain data modeling. Neurocomputing, 2018, 322: 58–69

    Article  Google Scholar 

  20. Zheng Y, Chen B, Wang S, et al. Broad learning system based on maximum correntropy criterion. IEEE Trans Neural Netw Learn Syst, 2020, 32: 3083–3097

    Article  MathSciNet  Google Scholar 

  21. He R, Zheng W-S, Hu B-G. Maximum correntropy criterion for robust face recognition. IEEE Trans Pattern Anal Mach Intell, 2010, 33: 1561–1576

    Google Scholar 

  22. Chen B, Dang L, Gu Y, et al. Minimum error entropy Kalman filter. IEEE Trans Syst Man Cybern Syst, 2019, 51: 5819–5829

    Article  Google Scholar 

  23. Principe J C. Information Theoretic Learning: Renyi’s Entropy and Kernel Perspectives. Berlin: Springer, 2010

    Book  Google Scholar 

  24. de Sá J P M, Silva L M A, Santos J M F, et al. Minimum Error Entropy Classification. Berlin: Springer, 2013

    Book  Google Scholar 

  25. Jiang J, He Y L, Dai D X, et al. A new kernel density estimator based on the minimum entropy of data set. Inf Sci, 2019, 491: 223–231

    Article  MathSciNet  Google Scholar 

  26. Peng S, Ser W, Chen B, et al. Robust constrained adaptive filtering under minimum error entropy criterion. IEEE Trans Circuits Syst II, 2018, 65: 1119–1123

    Google Scholar 

  27. Wang Y, Tang Y Y, Li L. Minimum error entropy based sparse representation for robust subspace clustering. IEEE Trans Signal Process, 2015, 63: 4010–4021

    Article  MathSciNet  Google Scholar 

  28. Lu L, Zhao H, Chen C. A new normalized subband adaptive filter under minimum error entropy criterion. Signal Image Video Process, 2016, 10: 1097–1103

    Article  Google Scholar 

  29. Wang G, Chen B, Yang X, et al. Numerically stable minimum error entropy Kalman filter. Signal Process, 2021, 181: 107914

    Article  Google Scholar 

  30. Chen B, Xing L, Zheng N, et al. Quantized minimum error entropy criterion. IEEE Trans Neural Netw Learn Syst, 2018, 30: 1370–1380

    Article  MathSciNet  Google Scholar 

  31. Silverman B W. Density Estimation for Statistics and Data Analysis. New York: Routledge, 2018

    Book  Google Scholar 

  32. Parzen E. On estimation of a probability density function and mode. Ann Math Statist, 1962, 33: 1065–1076

    Article  MathSciNet  Google Scholar 

  33. Chen B, Xing L, Xu B, et al. Insights into the robustness of minimum error entropy estimation. IEEE Trans Neural Netw Learn Syst, 2016, 29: 731–737

    Article  MathSciNet  Google Scholar 

  34. Agarwal R P, Meehan M, O’regan D. Fixed Point Theory and Applications. Cambridge: Cambridge University Press, 2001

    Book  Google Scholar 

  35. Heravi A R, Hodtani G A. A new robust fixed-point algorithm and its convergence analysis. J Fixed Point Theor Appl, 2017, 19: 3191–3215

    Article  MathSciNet  Google Scholar 

  36. Xie Y, Li Y, Gu Y, et al. Fixed-point minimum error entropy with fiducial points. IEEE Trans Signal Process, 2020, 68: 3824–3833

    Article  MathSciNet  Google Scholar 

  37. Blake C. UCI repository of machine learning databases. 1998. http://www.ics.uci.edu/mlearn/MLRepository.html

  38. Shi X. Effect of water-cement ratio on setting time of cement paste (in Chinese). Sichuan Cem, 2018, 7: 8

    Google Scholar 

  39. Baseri H, Rabiee S M, Moztarzadeh F, et al. Mechanical strength and setting times estimation of hydroxyapatite cement by using neural network. Mater Des (1980-2015), 2010, 31: 2585–2591

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (Grant No. 2019YFB1703600), National Natural Science Foundation of China (Grant Nos. 62006079, 61751202, U1813203, U1801262), China Postdoctoral Science Foundation (Grant No. 2020TQ0105), Science and Technology Major Project of Guangzhou (Grant No. 202007030006), Natural Science Foundation of Guangdong Province (Grant No. 2021A1515011998), Program for Guangdong Introducing Innovative and Enterpreneurial Teams (Grant No. 2019ZT08X214), and Science and Technology Project of Guangzhou (Grant No. 202102020634).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhulin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Liu, Z. & Chen, C.L.P. Broad learning system based on the quantized minimum error entropy criterion. Sci. China Inf. Sci. 65, 222203 (2022). https://doi.org/10.1007/s11432-022-3560-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3560-8

Keywords

Navigation