Skip to main content
Log in

Review of noble-gas spin amplification via the spin-exchange collisions

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Due to isolation from the environment with the protection of the full electronic shells, nuclear spins of noble gas typically feature extraordinary long coherence times, high polarization and good chemical inertness, which makes themselves attractive in extensive scientific applications. Recently, the noble-gas spin amplification via the spin-exchange collisions between overlapping noble-gas spins and alkali-atom spins has been theoretically and experimentally demonstrated in various quantum techniques including maser, Floquet maser, spin-based amplifier, and Floquet spin amplifier. The noble-gas spin amplification can enhance the external oscillating magnetic field by a factor of more than 100 and realize ultrasensitive magnetometry, which is important for the detection of weak electromagnetic fields and hypothetical particles. Based on the spin amplification, experiments have been conducted to search for axion-like dark matter and exotic spin-dependent forces and new constraints have been established. This review summarizes the recent progress on noble-gas spin amplification, including the basic principles, methods, different types, the related applications ranging from magnetic-field sensing to searches for new physics, and prospects for further improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Estermann I, Frisch R, Stern O. Magnetic moment of the proton. Nature, 1933, 132: 169–170

    Article  MATH  Google Scholar 

  2. Walker T G, Happer W. Spin-exchange optical pumping of noble-gas nuclei. Rev Mod Phys, 1997, 69: 629–642

    Article  Google Scholar 

  3. Albert M S, Cates G D, Driehuys B, et al. Biological magnetic resonance imaging using laser-polarized 129Xe. Nature, 1994, 370: 199–201

    Article  Google Scholar 

  4. Wu Z. Wall interactions of spin-polarized atoms. Rev Mod Phys, 2021, 93: 035006

    Article  Google Scholar 

  5. Gentile T R, Nacher P J, Saam B, et al. Optically polarized 3He. Rev Mod Phys, 2017, 89: 045004

    Article  Google Scholar 

  6. Schaefer S R, Cates G D, Chien T R, et al. Frequency shifts of the magnetic-resonance spectrum of mixtures of nuclear spin-polarized noble gases and vapors of spin-polarized alkali-metal atoms. Phys Rev A, 1989, 39: 5613–5623

    Article  Google Scholar 

  7. Gross S, Barmet C, Dietrich B E, et al. Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution. Nat Commun, 2016, 7: 1–7

    Article  Google Scholar 

  8. Wu T, Blanchard J W, Kimball D F J, et al. Nuclear-spin comagnetometer based on a liquid of identical molecules. Phys Rev Lett, 2018, 121: 023202

    Article  Google Scholar 

  9. Farooq M, Chupp T, Grange J, et al. Absolute magnetometry with 3He. Phys Rev Lett, 2020, 124: 223001

    Article  Google Scholar 

  10. Jiménez-Martínez R, Kennedy D J, Rosenbluh M, et al. Optical hyperpolarization and NMR detection of 129Xe on a microfluidic chip. Nat Commun, 2014, 5: 3908

    Article  Google Scholar 

  11. Kornack T W, Ghosh R K, Romalis M V. Nuclear spin gyroscope based on an atomic comagnetometer. Phys Rev Lett, 2005, 95: 230801

    Article  Google Scholar 

  12. Chupp T E, Oteiza E R, Richardson J M, et al. Precision frequency measurements with polarized 3He, 21 Ne, and 129Xe atoms. Phys Rev A, 1988, 38: 3998–4003

    Article  Google Scholar 

  13. Giovannetti V, Lloyd S, Maccone L. Quantum-enhanced measurements: beating the standard quantum limit. Science, 2004, 306: 1330–1336

    Article  Google Scholar 

  14. Giovannetti V, Lloyd S, Maccone L. Advances in quantum metrology. Nat Photon, 2011, 5: 222–229

    Article  Google Scholar 

  15. Pezzé L, Smerzi A, Oberthaler M K, et al. Quantum metrology with nonclassical states of atomic ensembles. Rev Mod Phys, 2018, 90: 035005

    Article  MathSciNet  Google Scholar 

  16. Jiang M, Su H, Garcon A, et al. Search for axion-like dark matter with spin-based amplifiers. Nat Phys, 2021, 17: 1402–1407

    Article  Google Scholar 

  17. Jiang M, Su H, Wu Z, et al. Floquet maser. Sci Adv, 2021, 7: eabe0719

    Article  Google Scholar 

  18. Su H, Wang Y, Jiang M, et al. Search for exotic spin-dependent interactions with a spin-based amplifier. Sci Adv, 2021, 7: eabi9535

    Article  Google Scholar 

  19. Wang Y, Su H, Jiang M, et al. Limits on axions and axionlike particles within the axion window using a spin-based amplifier. ArXiv:2201.11847, 2022

  20. DeMille D, Doyle J M, Sushkov A O. Probing the frontiers of particle physics with tabletop-scale experiments. Science, 2017, 357: 990–994

    Article  Google Scholar 

  21. Safronova M S, Budker D, DeMille D, et al. Search for new physics with atoms and molecules. Rev Mod Phys, 2018, 90: 025008

    Article  MathSciNet  Google Scholar 

  22. Budker D, Graham P W, Ledbetter M, et al. Proposal for a cosmic axion spin precession experiment (CASPEr). Phys Rev X, 2014, 4: 021030

    Google Scholar 

  23. Arvanitaki A, Geraci A A. Resonantly detecting axion-mediated forces with nuclear magnetic resonance. Phys Rev Lett, 2014, 113: 161801

    Article  Google Scholar 

  24. Jiang M, Qin Y, Wang X, et al. Floquet spin amplification. Phys Rev Lett, 2022, 128: 233201

    Article  Google Scholar 

  25. Wu Z K, Kitano M, Happer W, et al. Optical determination of alkali metal vapor number density using Faraday rotation. Appl Opt, 1986, 25: 4483–4492

    Article  Google Scholar 

  26. Opechowski W. Magneto-optical effects and paramagnetic resonance. Rev Mod Phys, 1953, 25: 264–268

    Article  Google Scholar 

  27. Jiang M, Xu W, Li Q, et al. Interference in atomic magnetometry. Adv Quantum Tech, 2020, 3: 2000078

    Article  Google Scholar 

  28. Moessner R, Sondhi S L. Equilibration and order in quantum Floquet matter. Nat Phys, 2017, 13: 424–428

    Article  Google Scholar 

  29. Eckardt A. Colloquium: atomic quantum gases in periodically driven optical lattices. Rev Mod Phys, 2017, 89: 011004

    Article  MathSciNet  Google Scholar 

  30. Shirley J H. Solution of the Schrödinger equation with a Hamiltonian periodic in time. Phys Rev, 1965, 138: 979–987

    Article  Google Scholar 

  31. Jin L, Pfender M, Aslam N, et al. Proposal for a room-temperature diamond maser. Nat Commun, 2015, 6: 8251

    Article  Google Scholar 

  32. Oxborrow M, Breeze J D, Alford N M. Room-temperature solid-state maser. Nature, 2012, 488: 353–356

    Article  Google Scholar 

  33. Suefke M, Lehmkuhl S, Liebisch A, et al. Para-hydrogen raser delivers sub-millihertz resolution in nuclear magnetic resonance. Nat Phys, 2017, 13: 568–572

    Article  Google Scholar 

  34. Kotler S, Akerman N, Glickman Y, et al. Single-ion quantum lock-in amplifier. Nature, 2011, 473: 61–65

    Article  Google Scholar 

  35. Aggarwal N, Schnabel A, Voigt J, et al. Characterization of magnetic field noise in the ARIADNE source mass rotor. 2020. ArXiv:2011.12617

  36. Kraus H, Soltamov V A, Riedel D, et al. Room-temperature quantum microwave emitters based on spin defects in silicon carbide. Nat Phys, 2014, 10: 157–162

    Article  Google Scholar 

  37. Breeze J D, Salvadori E, Sathian J, et al. Continuous-wave room-temperature diamond maser. Nature, 2018, 555: 493–496

    Article  Google Scholar 

  38. Gordon J P, Zeiger H J, Townes C H. The maser—new type of microwave amplifier, frequency standard, and spectrometer. Phys Rev, 1955, 99: 1264–1274

    Article  Google Scholar 

  39. Goldenberg H M, Kleppner D, Ramsey N F. Atomic hydrogen maser. Phys Rev Lett, 1960, 5: 361–362

    Article  Google Scholar 

  40. Bienfait A, Pla J J, Kubo Y, et al. Controlling spin relaxation with a cavity. Nature, 2016, 531: 74–77

    Article  Google Scholar 

  41. Bloembergen N, Pound R V. Radiation damping in magnetic resonance experiments. Phys Rev, 1954, 95: 8–12

    Article  Google Scholar 

  42. Sato T, Ichikawa Y, Kojima S, et al. Development of co-located 129Xe and 131Xe nuclear spin masers with external feedback scheme. Phys Lett A, 2018, 382: 588–594

    Article  Google Scholar 

  43. Gordon J P, Zeiger H J, Townes C H. The maser—new type of microwave amplifier, frequency standard, and spectrometer. Phys Rev, 1955, 99: 1264–1274

    Article  Google Scholar 

  44. Marfaing J, Bois J J, Blancon R, et al. About the world-wide magnetic-background noise in the millihertz frequency range. Europhys Lett, 2009, 88: 19002

    Article  Google Scholar 

  45. Wu T, Blanchard J W, Centers G P, et al. Search for axionlike dark matter with a liquid-state nuclear spin comagnetometer. Phys Rev Lett, 2019, 122: 191302

    Article  Google Scholar 

  46. Garcon A, Blanchard J W, Centers G P, et al. Constraints on bosonic dark matter from ultralow-field nuclear magnetic resonance. Sci Adv, 2019, 5: eaax4539

    Article  Google Scholar 

  47. Shah V, Knappe S, Schwindt P D D, et al. Subpicotesla atomic magnetometry with a microfabricated vapour cell. Nat Photon, 2007, 1: 649–652

    Article  Google Scholar 

  48. Boto E, Holmes N, Leggett J, et al. Moving magnetoencephalography towards real-world applications with a wearable system. Nature, 2018, 555: 657–661

    Article  Google Scholar 

  49. Budker D, Romalis M. Optical magnetometry. Nat Phys, 2007, 3: 227–234

    Article  Google Scholar 

  50. Budker D, Gawlik W, Kimball D F, et al. Resonant nonlinear magneto-optical effects in atoms. Rev Mod Phys, 2002, 74: 1153–1201

    Article  Google Scholar 

  51. Allred J C, Lyman R N, Kornack T W, et al. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. Phys Rev Lett, 2002, 89: 130801

    Article  Google Scholar 

  52. Kominis I K, Kornack T W, Allred J C, et al. A subfemtotesla multichannel atomic magnetometer. Nature, 2003, 422: 596–599

    Article  Google Scholar 

  53. Derevianko A, Pospelov M. Hunting for topological dark matter with atomic clocks. Nat Phys, 2014, 10: 933–936

    Article  Google Scholar 

  54. Terrano W A, Adelberger E G, Lee J G, et al. Short-range, spin-dependent interactions of electrons: a probe for exotic pseudo-goldstone bosons. Phys Rev Lett, 2015, 115: 201801

    Article  Google Scholar 

  55. Ding J, Wang J, Zhou X, et al. Constraints on the velocity and spin dependent exotic interaction at the micrometer range. Phys Rev Lett, 2020, 124: 161801

    Article  Google Scholar 

  56. Wineland D J, Bollinger J J, Heinzen D J, et al. Search for anomalous spin-dependent forces using stored-ion spectroscopy. Phys Rev Lett, 1991, 67: 1735–1738

    Article  Google Scholar 

  57. Kotler S, Ozeri R, Kimball D F J. Constraints on exotic dipole-dipole couplings between electrons at the micrometer scale. Phys Rev Lett, 2015, 115: 081801

    Article  Google Scholar 

  58. Rong X, Wang M, Geng J, et al. Searching for an exotic spin-dependent interaction with a single electron-spin quantum sensor. Nat Commun, 2018, 9: 1–7

    Article  Google Scholar 

  59. Bulatowicz M, Griffith R, Larsen M, et al. Laboratory search for a long-range T-odd P-odd interaction from axionlike particles using dual-species nuclear magnetic resonance with polarized 129 Xe and 131 Xe gas. Phys Rev Lett, 2013, 111: 102001

    Article  Google Scholar 

  60. Tullney K, Allmendinger F, Burghoff M, et al. Constraints on spin-dependent short-range interaction between nucleons. Phys Rev Lett, 2013, 111: 100801

    Article  Google Scholar 

  61. Ficek F, Kimball D F J, Kozlov M G, et al. Constraints on exotic spin-dependent interactions between electrons from helium fine-structure spectroscopy. Phys Rev A, 2017, 95: 032505

    Article  Google Scholar 

  62. Ficek F, Fadeev P, Flambaum V V, et al. Constraints on exotic spin-dependent interactions between matter and antimatter from antiprotonic helium spectroscopy. Phys Rev Lett, 2018, 120: 183002

    Article  Google Scholar 

  63. Ni W T, Pan S S, Yeh H C, et al. Search for an axionlike spin coupling using a paramagnetic salt with a dc SQUID. Phys Rev Lett, 1999, 82: 2439–2442

    Article  Google Scholar 

  64. Kimball D F J, Boyd A, Budker D. Constraints on anomalous spin-spin interactions from spin-exchange collisions. Phys Rev A, 2010, 82: 062714

    Article  Google Scholar 

  65. Stadnik Y V, Dzuba V A, Flambaum V V. Improved limits on axionlike-particle-mediated P, T-violating interactions between electrons and nucleons from electric dipole moments of atoms and molecules. Phys Rev Lett, 2018, 120: 013202

    Article  Google Scholar 

  66. Dzuba V A, Flambaum V V, Samsonov I B, et al. New constraints on axion-mediated P, T-violating interaction from electric dipole moments of diamagnetic atoms. Phys Rev D, 2018, 98: 035048

    Article  Google Scholar 

  67. Almasi A, Lee J, Winarto H, et al. New limits on anomalous spin-spin interactions. Phys Rev Lett, 2020, 125: 201802

    Article  Google Scholar 

  68. Afach S, Buchler B C, Budker D, et al. Search for topological defect dark matter with a global network of optical magnetometers. Nat Phys, 2021, 17: 1396–1401

    Article  Google Scholar 

  69. Peccei R D, Quinn H R. CP conservation in the presence of pseudoparticles. Phys Rev Lett, 1977, 38: 1440–1443

    Article  Google Scholar 

  70. Preskill J, Wise M B, Wilczek F. Cosmology of the invisible axion. Phys Lett B, 1983, 120: 127–132

    Article  Google Scholar 

  71. Kim J E, Carosi G. Axions and the strong CP problem. Rev Mod Phys, 2010, 82: 557–601

    Article  Google Scholar 

  72. Smorra C, Stadnik Y V, Blessing P E, et al. Direct limits on the interaction of antiprotons with axion-like dark matter. Nature, 2019, 575: 310–314

    Article  Google Scholar 

  73. Graham P W, Kaplan D E, Mardon J, et al. Spin precession experiments for light axionic dark matter. Phys Rev D, 2018, 97: 055006

    Article  Google Scholar 

  74. Graham P W, Rajendran S. New observables for direct detection of axion dark matter. Phys Rev D, 2013, 88: 035023

    Article  Google Scholar 

  75. Dine M, Fischler W. The not-so-harmless axion. Phys Lett B, 1983, 120: 137–141

    Article  Google Scholar 

  76. Kimball D F J, Afach S, Aybas D, et al. Overview of the cosmic axion spin precession experiment (CASPEr). In: Proceedings of Microwave Cavities and Detectors for Axion Research, 2020. 105–121

  77. Bloch I M, Hochberg Y, Kuflik E, et al. Axion-like relics: new constraints from old comagnetometer data. J High Energ Phys, 2020, 2020: 167

    Article  Google Scholar 

  78. Vysotsskii M, Zel’Dovich Y B, Khlopov M Y, et al. Some astrophysical limitations on the axion mass. J Exp Theor Phys Lett, 1978, 27: 533

    Google Scholar 

  79. Raffelt G G. Astrophysical axion bounds. In: Proceedings of Axions, 2008. 51–71

  80. Ramsey N F. The tensor force between two protons at long range. Phys A-Stat Mech Its Appl, 1979, 96: 285–289

    Article  Google Scholar 

  81. Wilczek F. Problem of strong P and T invariance in the presence of instantons. Phys Rev Lett, 1978, 40: 279–282

    Article  Google Scholar 

  82. Weinberg S. A new light boson? Phys Rev Lett, 1978, 40: 223–226

    Article  Google Scholar 

  83. Fadeev P, Stadnik Y V, Ficek F, et al. Revisiting spin-dependent forces mediated by new bosons: potentials in the coordinate-space representation for macroscopic- and atomic-scale experiments. Phys Rev A, 2019, 99: 022113

    Article  Google Scholar 

  84. Piegsa F M, Pignol G. Limits on the axial coupling constant of new light bosons. Phys Rev Lett, 2012, 108: 181801

    Article  Google Scholar 

  85. Haddock C, Amadio J, Anderson E, et al. A search for possible long range spin dependent interactions of the neutron from exotic vector boson exchange. Phys Lett B, 2018, 783: 227–233

    Article  Google Scholar 

  86. Yan H, Snow W M. New limit on possible long-range parity-odd interactions of the neutron from neutron-spin rotation in liquid 4He. Phys Rev Lett, 2013, 110: 082003

    Article  Google Scholar 

  87. Yan H, Sun G A, Peng S M, et al. Searching for new spin- and velocity-dependent interactions by spin relaxation of polarized 3He Gas. Phys Rev Lett, 2015, 115: 182001

    Article  Google Scholar 

  88. Else D V, Bauer B, Nayak C. Floquet time crystals. Phys Rev Lett, 2016, 117: 090402

    Article  Google Scholar 

  89. Shu Z, Liu Y, Cao Q, et al. Observation of Floquet Raman transition in a driven solid-state spin system. Phys Rev Lett, 2018, 121: 210501

    Article  Google Scholar 

  90. Peng P, Yin C, Huang X, et al. Floquet prethermalization in dipolar spin chains. Nat Phys, 2021, 17: 444–447

    Article  Google Scholar 

  91. Xu J, Zhong C, Han X, et al. Floquet cavity electromagnonics. Phys Rev Lett, 2020, 125: 237201

    Article  Google Scholar 

  92. Clark L W, Jia N, Schine N, et al. Interacting Floquet polaritons. Nature, 2019, 571: 532–536

    Article  Google Scholar 

  93. Bloch I M, Ronen G, Shaham R, et al. New constraints on axion-like dark matter using a Floquet quantum detector. Sci Adv, 2022, 8: eabl8919

    Article  Google Scholar 

  94. Ma J X, Lan Y, Yan H Y. Experimental design and optimization of resonantly searching for exotic axion-like particles. Sci Sin-Phys Mech Astron, 2022

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (Grant No. 2018-YFA0306600), National Natural Science Foundation of China (Grant Nos. 11661161018, 11927811, 12004371), Anhui Initiative in Quantum Information Technologies (Grant No. AHY050000), and USTC Research Funds of the Double First-Class Initiative (Grant No. YD3540002002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Jiang or Xinhua Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, H., Jiang, M. & Peng, X. Review of noble-gas spin amplification via the spin-exchange collisions. Sci. China Inf. Sci. 65, 200501 (2022). https://doi.org/10.1007/s11432-022-3550-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3550-1

Keywords

Navigation