Skip to main content
Log in

Survey on applications of algebraic state space theory of logical systems to finite state machines

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Algebraic state space theory (ASST) of logical systems, developed based on the semi-tensor product (STP) which is a new matrix analysis tool built in recent ten years, provides an algebraic analysis approach for many fields of science, such as logical dynamical systems, finite-valued systems, discrete event dynamic systems, and networked game systems. This study focuses on comprehensively surveying the applications of the ASST method to the field of finite state machines (FSMs). Some necessary preliminaries on the method are first reviewed. Then the applications of the method in the FSM field are reviewed, including deterministic FSMs, nondeterministic FSMs, probabilistic FSMs, networked FSMs, and controlled and combined FSMs. In addition, other applications related to both STP and FSMs are surveyed, such as the application of FSM to Boolean control networks and the application of graph theory to FSMs. Finally, some potential research directions with respect to the ASST method in the FSM field are predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deif A S. Advanced Matrix Theory for Scientists ADN Engineers. Boca Raton: CRC Press, 1990

    Google Scholar 

  2. Zhang F. Matrix Theory, Basic Results and Techniques. New York: Springer-Verlag, 1999

    Book  Google Scholar 

  3. Cheng D Z. Semi-tensor product of matrices and its application to Morgen’s problem. Sci China Ser F-Inf Sci, 2001, 44: 195–212

    Article  ADS  MathSciNet  Google Scholar 

  4. Zhong J, Ho D W C, Lu J, et al. Pinning controllers for activation output tracking of Boolean network under one-bit perturbation. IEEE Trans Cybern, 2019, 49: 3398–3408

    Article  PubMed  Google Scholar 

  5. Wu Y H, Sun X M, Zhao X D, et al. Optimal control of Boolean control networks with average cost: a policy iteration approach. Automatica, 2019, 100: 378–387

    Article  MathSciNet  Google Scholar 

  6. Cheng D Z, Liu T. From Boolean game to potential game. Automatica, 2018, 96: 51–60

    Article  MathSciNet  Google Scholar 

  7. Yue J M, Yan Y Y. Update law of simplifying finite state machines (FSMs): an answer to the open question of the unmanned optimization of FSMs. IEEE Trans Circ Syst II, 2022, 69: 1164–1167

    Google Scholar 

  8. Wu Y H, Shen T L. Policy iteration approach to control residual gas fraction in IC engines under the framework of stochastic logical dynamics. IEEE Trans Contr Syst Technol, 2017, 25: 1100–1107

    Article  Google Scholar 

  9. Xu X R, Hong Y G. Matrix approach to model matching of asynchronous sequential machines. IEEE Trans Automat Contr, 2013, 58: 2974–2979

    Article  MathSciNet  Google Scholar 

  10. Lv Z Y, Wu Y H, Zhao Q, et al. Design and control of a novel coaxial tilt-rotor UAV. IEEE Trans Ind Electron, 2022, 69: 3810–3821

    Article  ADS  Google Scholar 

  11. Li Y L, Li H T, Ding X Y, et al. Leader-follower consensus of multiagent systems with time delays over finite fields. IEEE Trans Cybern, 2019, 49: 3203–3208

    Article  PubMed  Google Scholar 

  12. Li F F, Yan H C, Karimi H R. Single-input pinning controller design for reachability of Boolean networks. IEEE Trans Neural Netw Learn Syst, 2018, 29: 3264–3269

    MathSciNet  PubMed  Google Scholar 

  13. Zhong J, Lu J Q, Huang T W, et al. Controllability and synchronization analysis of identical-hierarchy mixed-valued logical control networks. IEEE Trans Cybern, 2017, 47: 3482–3493

    Article  PubMed  Google Scholar 

  14. Wang Y H, Cheng D Z, Liu X Y. Matrix expression of Shapley values and its application to distributed resource allocation. Sci China Inf Sci, 2019, 62: 022201

    Article  MathSciNet  Google Scholar 

  15. Wang B, Feng J E. On detectability of probabilistic Boolean networks. Inf Sci, 2019, 483: 383–395

    Article  ADS  MathSciNet  CAS  Google Scholar 

  16. Li H T, Zhao G D, Meng M, et al. A survey on applications of semi-tensor product method in engineering. Sci China Inf Sci, 2018, 61: 010202

    Article  MathSciNet  Google Scholar 

  17. Lu J Q, Li M L, Huang T W, et al. The transformation between the Galois NLFSRs and the Fibonacci NLFSRs via semi-tensor product of matrices. Automatica, 2018, 96: 393–397

    Article  MathSciNet  Google Scholar 

  18. Yang M, Li R, Chu T G. Construction of a Boolean model of gene and protein regulatory network with memory. Neural Networks, 2014, 52: 18–24

    Article  PubMed  Google Scholar 

  19. Yue J, Yan Y, Chen Z, et al. Identification of predictors of Boolean networks from observed attractor states. Math Meth Appl Sci, 2019, 42: 3848–3864

    Article  MathSciNet  Google Scholar 

  20. Cheng D Z. On equivalence of matrices. Asian J Math, 2019, 23: 257–348

    Article  ADS  MathSciNet  Google Scholar 

  21. Zhao G D, Wang Y Z. Formulation and optimization control of a class of networked evolutionary games with switched topologies. Nonlinear Anal-Hybrid Syst, 2016, 22: 98–107

    Article  MathSciNet  CAS  Google Scholar 

  22. Xu X R, Zhang Y Q, Hong Y G. Matrix approach to stabilizability of deterministic finite automata. In: Proceedings of American Control Conference (ACC), 2013. 3242–3247

  23. Zhang Z P, Chen Z Q, Han X G, et al. On the static output feedback stabilization of deterministic finite automata based upon the approach of semi-tensor product of matrix. Kybernetika, 2018, 54: 41–60

    MathSciNet  CAS  Google Scholar 

  24. Han X G, Chen Z Q, Liu Z X, et al. The detection and stabilisation of limit cycle for deterministic finite automata. Int J Control, 2018, 91: 874–886

    Article  MathSciNet  Google Scholar 

  25. Zhang Z P, Chen Z Q, Han X G, et al. Static output feedback stabilization of deterministic finite automat. In: Proceedings of the 36th Chinese Control Conference, Dalian, 2017. 2421–2425

  26. Zhang Z P, Chen Z Q, Liu Z X. Compatible-invariant subset analysis of deterministic finite automata via semi-tensor product of matrices approach. J China Univ Posts and Telecommun, 2018, 25: 75–82

    Google Scholar 

  27. Yue J M, Yan Y Y, Chen Z Q. Language acceptability of finite automata based on theory of semi-tensor product of matrices. Asian J Control, 2019, 21: 2634–2643

    Article  MathSciNet  Google Scholar 

  28. Yan Y Y, Chen Z Q, Liu Z X. Semi-tensor product of matrices approach to reachability of finite automata with application to language recognition. Front Comput Sci, 2014, 8: 948–957

    Article  MathSciNet  Google Scholar 

  29. Yan Y Y, Chen Z Q, Yue J M. STP approach to controlliability of finite state machines. In: Proceedings of the 17th IFAC Symposium on System Identification, Beijing, 2015

  30. Han X G, Chen Z Q. A matrix-based approach to verifying stability and synthesizing optimal stabilizing controllers for finite-state automata. J Franklin Inst, 2018, 355: 8642–8663

    Article  MathSciNet  Google Scholar 

  31. Yan Y Y, Chen Z Q, Liu Z X. Semi-tensor product approach to controllability and stabilizability of finite automata. J Syst Eng Electron, 2015, 26: 134–141

    Article  Google Scholar 

  32. Yue J M, Yan Y Y, Li Z Q, et al. Matrix conditions of language recognition for finite state machines using the theory of semi-tensor product of matrices. In: Proceedings of the 38th Chinese Control Conference, Guangzhou, 2019. 65–70

  33. Yan Y Y, Chen Z Q, Liu Z X. Verification analysis of self-verifying automata via semi-tensor product of matrices. J China Univ Posts Telecommun, 2014, 21: 96–104

    Article  Google Scholar 

  34. Yan Y Y, Yue J M, Fu Z M, et al. Algebraic criteria for finite automata understanding of regular language. Front Comput Sci, 2019, 13: 1148–1150

    Article  Google Scholar 

  35. Zhang Z P, Xia C Y, Chen Z Q. On the stabilization of nondeterministic finite automata via static output feedback. Appl Math Comput, 2020, 365: 124687

    MathSciNet  Google Scholar 

  36. Wang H H, Zhao L Y, Li P. Nondeterministic finite automata based on quantum logic: language equivalence relation and robustness. Int J Approximate Reasoning, 2021, 129: 20–40

    Article  MathSciNet  Google Scholar 

  37. Yue J M, Yan Y Y, Chen Z Q. Three matrix conditions for the reduction of finite automata based on the theory of semi-tensor product of matrices. Sci China Inf Sci, 2020, 63: 129203

    Article  MathSciNet  Google Scholar 

  38. Li Y L, Dou W H, Li H T, et al. Controllability, reachability, and stabilizability of finite automata: a controllability matrix method. Math Problems Eng, 2018, 2018: 1–6

    MathSciNet  Google Scholar 

  39. Xu X R, H Y G. Observability analysis and observer design for finite automata via matrix approach. IET Control Theor & Appl, 2013, 7: 1609–1615

    Article  MathSciNet  Google Scholar 

  40. Xu X R, Hong Y G, Lin H. Matrix approach to simulation and bisimulation analysis of finite automata. In: Proceedings of the 10th World Congress on Intelligent Control and Automation (WCICA), 2012. 2716–2721

  41. Xu X R, Hong Y G. Matrix expression and reachability analysis of finite automata. J Control Theor Appl, 2012, 10: 210–215

    Article  MathSciNet  Google Scholar 

  42. Yan Y Y, Yue J M, Fu Z M, et al. Construction of incompatible graph of finite state machines using the theory of semi-tensor product of matrices. In: Proceedings of the 38th Chinese Control Conference, Guangzhou, 2019. 59–64

  43. Yue J M, Yan Y Y, Chen Z Q, et al. Further results on bilinear behavior formulation of finite state machines. Sci China Inf Sci, 2022, 65: 219201

    Article  MathSciNet  Google Scholar 

  44. Nan Y, Yi G X, Wang C H, et al. A novel effectiveness evaluation method based on simultaneous probabilistic finite-state machines. IEEE Syst J, 2020, 14: 1611–1622

    Article  ADS  Google Scholar 

  45. Li J, Tan Y. A probabilistic finite state machine based strategy for multi-target search using swarm robotics. Appl Soft Computing, 2019, 77: 467–483

    Article  Google Scholar 

  46. Dou W H, Li H T, Alsaadi F E. Semitensor product approach to controllability, reachability, and stabilizability of probabilistic finite automata. Math Problems Eng, 2019, 2019: 1–7

    MathSciNet  Google Scholar 

  47. Li Y F, Pan X D, Wu G C, et al. Shape-instability life scatter prediction of 40Cr steel: damage-coupled crystal plastic probabilistic finite element method. Int J Plast, 2016, 79: 1–18

    Article  Google Scholar 

  48. Guo T, Frangopol D M, Chen Y W. Fatigue reliability assessment of steel bridge details integrating weigh-in-motion data and probabilistic finite element analysis. Comput Struct, 2012, 112–113: 245–257

    Article  Google Scholar 

  49. Zhang Z, Xia C, Chen S, et al. Reachability analysis of networked finite state machine with communication losses: a switched perspective. IEEE J Sel Areas Commun, 2020, 38: 845–853

    Article  Google Scholar 

  50. Yan Y Y, Deng H, Chen Z Q. A new look at the critical observability of finite state machines from an algebraic viewpoint. Asian J Control, 2022, 24: 3056–3065

    Article  MathSciNet  Google Scholar 

  51. Yue J M, Yan Y Y, Chen Z Q, et al. State space optimization of finite state machines from the viewpoint of control theory. Front Inform Technol Electron Eng, 2021, 22: 1598–1609

    Article  Google Scholar 

  52. Zhang Z P, Chen Z Q, Liu Z X. Modeling and reachability of probabilistic finite automata based on semi-tensor product of matrices. Sci China Inf Sci, 2018, 61: 129202

    Article  MathSciNet  Google Scholar 

  53. Zhao J T, Chen Z Q, Liu Z X. Reachability and controllability of time-variant k-valued logical control network and finite memories k-valued logical control network. In: Proceedings of the 36th Chinese Control Conference, Dalian, 2017. 2379–2386

  54. Gao N, Han X G, Chen Z Q, et al. A novel matrix approach to observability analysis of finite automata. Int J Syst Sci, 2017, 48: 3558–3568

    Article  ADS  MathSciNet  Google Scholar 

  55. Brzozowski J, Ye Y L. Gate circuits with feedback in finite multivalued algebras of transients. J Multiple-Valued Logic Soft Comput, 2010, 16: 155–176

    MathSciNet  Google Scholar 

  56. Zhang Z P, Chen Z Q, Liu Z C. Reachability and controllability analysis of probabilistic finite automata via a novel matrix method. Asian J Control, 2019, 21: 2578–2586

    Article  MathSciNet  Google Scholar 

  57. Yang J M. Tolerating permanent state transition faults in asynchronous sequential machines. J Comput Sci Technol, 2016, 31: 1028–1037

    Article  MathSciNet  Google Scholar 

  58. Yang J M, Kwak S W. Static corrective control for asynchronous sequential machines and its application to on-board computers. IET Control Theor & Appl, 2016, 10: 2526–2533

    Article  MathSciNet  Google Scholar 

  59. Yang J M. Corrective control of composite asynchronous sequential machines under partial observation. IEEE Trans Automat Contr, 2016, 61: 473–478

    MathSciNet  Google Scholar 

  60. Cheng D Z, Qi H S, Zhao Y. An Introduction to Semi-Tensor Product of Matrices and Its Applications. Singapore: World Scientific Publishing Co. Pte. Ltd., 2012

    Book  Google Scholar 

  61. Cheng D Z, Qi H S. A linear representation of dynamics of Boolean networks. IEEE Trans Automat Contr, 2010, 55: 2251–2258

    Article  MathSciNet  Google Scholar 

  62. Kohavi Z, Jha N K. Switching and Finite Automata Theory. 3rd ed. New York: Cambridge University Press, 2010

    Google Scholar 

  63. Chen W Y. Theory of Finite Automata (in Chinese). Chengdu: University of Electronic Science Technology Press, 2007

    Google Scholar 

  64. Barkalov A, Bieganowski J, Titarenko L. Logic Synthesis for Finite State Machines Based on Linear Chains of States: Foundations, Recent Developments and Challenges. Berlin: Springer, 2018

    Book  Google Scholar 

  65. Goren S, Ferguson F J. Chesmin: a heuristic for state reduction in incompletely specified finite state machines. In: Proceedings of Design, Automation and Test in Europe Conference and Exhibition, 2002

  66. Cassandras C G, Lafortune S. Introduction to Discrete Event Systems. 2nd ed. New York: Springer, 2008

    Book  Google Scholar 

  67. Shu S L, Lin F, Ying H, et al. State estimation and detectability of probabilistic discrete event systems. Automatica, 2008, 44: 3054–3060

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  68. Viard K, Fanti M P, Faraut G, et al. Human activity discovery and recognition using probabilistic finite-state automata. IEEE Trans Automat Sci Eng, 2020, 17: 2085–2096

    Article  Google Scholar 

  69. Liu C H, Huynh D Q, Reynolds M. Toward occlusion handling in visual tracking via probabilistic finite state machines. IEEE Trans Cybern, 2020, 50: 1726–1738

    Article  PubMed  Google Scholar 

  70. Hsu W C, Lee L W, Tseng K H, et al. Design of feedback control for networked finite-distributed delays systems with quantization and packet dropout compensation. Discrete Dyn Nat Soc, 2015, 2015: 1–15

    Article  MathSciNet  Google Scholar 

  71. Emek Y, Uitto J. Dynamic networks of finite state machines. Theor Comput Sci, 2020, 810: 58–71

    Article  MathSciNet  Google Scholar 

  72. Guiraud P, Tanré E. Stability of synchronization under stochastic perturbations in leaky integrate and fire neural networks of finite size. Discrete Cont Dyn Syst-B, 2017, 22: 1–19

    Google Scholar 

  73. Meduna A, Zemek P. Controlled finite automata. Acta Inform, 2014, 51: 327–337

    Article  MathSciNet  Google Scholar 

  74. Farwer B, Jantzen M, Kudlek M, et al. Petri net controlled finite automata. Fundamenta Inform, 2008, 85: 111–121

    MathSciNet  Google Scholar 

  75. Lu J Q, Li H T, Liu Y, et al. Survey on semi-tensor product method with its applications in logical networks and other finite-valued systems. IET Control Theor & Appl, 2017, 11: 2040–2047

    Article  ADS  MathSciNet  Google Scholar 

  76. Kobayashi K, Imura J, Hiraishi K. Stabilization of finite automata with application to hybrid systems control. Discrete Event Dyn Syst, 2011, 21: 519–545

    Article  MathSciNet  Google Scholar 

  77. Kari J. Synchronization and stability of finite automata. J Universal Comput Sci, 2002, 8: 270–277

    MathSciNet  Google Scholar 

  78. Yan Y Y, Chen Z Q, Liu Z X, et al. Modelling combined automata via semi-tensor product of matrices. In: Proceedings of the 33rd Chinese Control Conference, Nanjing, 2014. 6560–6565

  79. Češka M, Havlena V, Holík L, et al. Approximate reduction of finite automata for high-speed network intrusion detection. Int J Softw Tools Technol Transfer, 2020, 22: 523–539

    Article  Google Scholar 

  80. Hong S P, Kim Y S, Kwon W H, et al. Model and stability of hybrid linear system. In: Proceedings of the DIMACS/SYCON Workshop on Hybrid Systems III: Verification and Control: Verification and Control, 1996. 1066: 424–435

  81. Ozveren C M, Willsky A S. Stabilization, tracking, and hierarchical modeling of discrete-event dynamic systems. IFAC Proc Volumes, 1990, 23: 529–533

    Article  Google Scholar 

  82. Ozveren C M, Willsky A S. Output stabilizability of discrete-event dynamic systems. IEEE Trans Automat Contr, 1991, 36: 925–935

    Article  MathSciNet  Google Scholar 

  83. Zhang Z P, Chen Z Q, Han X G, et al. Stabilization of probabilistic finite automata based on semi-tensor product of matrices. J Franklin Inst, 2020, 357: 5173–5186

    Article  MathSciNet  Google Scholar 

  84. Song H, Srinivasan R, Sookoor T, et al. Smart Cities: Foundations, Principles, and Applications. Hoboken: Wiley, 2017

    Book  Google Scholar 

  85. Song H, Rawat D B, Jeschke S, et al. Cyber-Physical Systems: Foundations, Principles and Applications. Orlando: Academic, 2016

    Google Scholar 

  86. Li H S, Lai L F, Poor H V. Multicast routing for decentralized control of cyber physical systems with an application in smart grid. IEEE J Sel Areas Commun, 2012, 30: 1097–1107

    Article  CAS  Google Scholar 

  87. Khan A A, Beg O A, Alamaniotis M, et al. Intelligent anomaly identification in cyber-physical inverter-based systems. Electric Power Syst Res, 2021, 193: 107024

    Article  Google Scholar 

  88. Chen Z Q, Zhou Y R, Zhang Z P, et al. Semi-tensor product of matrices approach to the problem of fault detection for discrete event systems (DESs). IEEE Trans Circ Syst II, 2020, 67: 3098–3102

    ADS  Google Scholar 

  89. Zhang Z P, Chen Z Q, Han X G, et al. On the static output feedback stabilisation of discrete event dynamic systems based upon the approach of semi-tensor product of matrices. Int J Syst Sci, 2019, 50: 1595–1608

    Article  ADS  MathSciNet  Google Scholar 

  90. Wang B, Feng J E, Meng M. Matrix approach to detectability of discrete event systems. J Franklin Inst, 2019, 356: 6460–6477

    Article  MathSciNet  Google Scholar 

  91. Han X G, Chen Z Q, Su R. Synthesis of minimally restrictive optimal stability-enforcing supervisors for nondeterministic discrete event systems. Syst Control Lett, 2019, 123: 33–39

    Article  MathSciNet  Google Scholar 

  92. Le S T, Wu Y H, Toyoda M. A congestion game framework for service chain composition in NFV with function benefit. Inf Sci, 2020, 514: 512–522

    Article  MathSciNet  Google Scholar 

  93. Tu Z Z, Xia X H, Zhu B. Demand-side management and control for a class of smart grids based on game theory. In: Proceedings of the 36th Chinese Control Conference, Dalian, 2017. 10662–10667

  94. Lu J Q, Liu R J, Lou J G, et al. Pinning stabilization of Boolean control networks via a minimum number of controllers. IEEE Trans Cybern, 2021, 51: 373–381

    Article  PubMed  Google Scholar 

  95. Han X G, Yang W D, Chen X Y, et al. Detectability vverification of probabilistic Boolean networks. Inf Sci, 2021, 548: 313–327

    Article  MathSciNet  Google Scholar 

  96. Ding X Y, Li H T. Optimal control of random evolutionary Boolean games. Int J Control, 2021, 94: 144–152

    Article  MathSciNet  Google Scholar 

  97. Yan Y Y, Chen Z Q, Yue J M, et al. STP approach to model controlled automata with application to reachability analysis of DEDS. Asian J Control, 2016, 18: 2027–2036

    Article  MathSciNet  Google Scholar 

  98. Gécseg F. Composition of automata. In: Automata, languages and programming. Berlin: Springer, 1974. 351–363

    Chapter  Google Scholar 

  99. Henzinger T A. The Theory of Hybrid Automata. Berlin: Springer, 2000

    Book  Google Scholar 

  100. Yan Y Y, Chen Z Q, Yue J M. Algebraic state space approach to model and control combined automata. Front Comput Sci, 2017, 11: 874–886

    Article  Google Scholar 

  101. Chen Z Q, Zhou Y R, Zhang Z P, et al. Observability analysis of combined finite automata based upon semi-tensor product of matrices approach. Trans Inst Measurement Control, 2021, 43: 717–727

    Article  ADS  Google Scholar 

  102. Akutsu T, Hayashida M, Ching W K, et al. Control of Boolean networks: hardness results and algorithms for tree structured networks. J Theor Biol, 2007, 244: 670–679

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  103. Cheng D Z, Qi H S. Controllability and observability of Boolean control networks. Automatica, 2009, 45: 1659–1667

    Article  MathSciNet  Google Scholar 

  104. Zhao Y, Qi H S, Cheng D Z. Input-state incidence matrix of Boolean control networks and its applications. Syst Control Lett, 2010, 59: 767–774

    Article  MathSciNet  Google Scholar 

  105. Cheng D Z, Zhao Y. Identification of Boolean control networks. Automatica, 2011, 47: 702–710

    Article  MathSciNet  Google Scholar 

  106. Li R, Yang M, Chu T G. Observability conditions of Boolean control networks. Int J Robust Nonlinear Control, 2014, 24: 2711–2723

    Article  MathSciNet  Google Scholar 

  107. Cheng D Z, Qi H S, Liu T, et al. A note on observability of Boolean control networks. Syst Control Lett, 2016, 87: 76–82

    Article  MathSciNet  Google Scholar 

  108. Shi W P, Wu B, Han J. A note on the observability of temporal Boolean control network. Abstract Appl Anal, 2013, 2013: 1–9

    MathSciNet  Google Scholar 

  109. Laschov D, Margaliot M, Even G. Observability of Boolean networks: a graph-theoretic approach. Automatica, 2013, 49: 2351–2362

    Article  MathSciNet  Google Scholar 

  110. Fornasini E, Valcher M E. Observability, reconstructibility and state observers of Boolean control networks. IEEE Trans Automat Contr, 2013, 58: 1390–1401

    Article  MathSciNet  Google Scholar 

  111. Zhang K Z, Zhang L J. Observability of Boolean control networks: a unified approach based on finite automata. IEEE Trans Automat Contr, 2016, 61: 2733–2738

    Article  MathSciNet  Google Scholar 

  112. Cheng D Z, Qi H S, Li Z Q. Analysis and Control of Boolean Networks: A Semi-Tensor Product Approach. London: Springer-Verlag, 2011

    Book  Google Scholar 

  113. Chaves M, Tournier L. Analysis tools for interconnected Boolean networks with biological applications. Front Physiol, 2018, 9: 586

    Article  PubMed  PubMed Central  Google Scholar 

  114. Zhang K Z, Zhang L J, Xie L H. Finite automata approach to observability of switched Boolean control networks. Nonlinear Anal-Hybrid Syst, 2016, 19: 186–197

    Article  MathSciNet  Google Scholar 

  115. Wang Y Z, Zhang C H, Liu Z B. A matrix approach to graph maximum stable set and coloring problems with application to multi-agent systems. Automatica, 2012, 48: 1227–1236

    Article  MathSciNet  CAS  Google Scholar 

  116. Xu M R, Wang Y Z, Wei A R. Robust graph coloring based on the matrix semi-tensor product with application to examination timetabling. Control Theor Technol, 2014, 12: 187–197

    Article  MathSciNet  Google Scholar 

  117. Meirong X U, Wang Y Z. Conflict-free coloring problem with appliction to frequency assignment. J Shandong Univ, 2015, 45: 64–69

    Google Scholar 

  118. Xu M R, Wang Y Z, Jiang P. Fuzzy graph coloring via semi-tensor product method. In: Proceedings of the 34th Chinese Control Conference, Hangzhou, 2015. 973–978

  119. Zhong J, Lu J Q, Huang C, et al. Finding graph minimum stable set and core via semi-tensor product approach. Neurocomputing, 2016, 174: 588–596

    Article  Google Scholar 

  120. Meng M, Feng J E. A matrix approach to hypergraph stable set and coloring problems with its application to storing problem. J Appl Math, 2014, 2014: 1–9

    MathSciNet  Google Scholar 

  121. Yue J M, Chen Z Q, Yan Y Y, et al. Solvability of k-track assignment problem: a graph approach. Control Theory & Appl, 2017, 34: 457–466

    Google Scholar 

  122. Yue J M, Yan Y Y, Chen Z Q. Matrix approach to simplification of finite state machines using semi-tensor product of matrices. Asian J Control, 2020, 22: 2061–2070

    Article  MathSciNet  Google Scholar 

  123. Wang Y B, Li Y M. Minimization of lattice multiset finite automata. J Intell Fuzzy Syst, 2018, 35: 627–637

    Article  Google Scholar 

  124. Li Y M, Pedrycz W. Minimization of lattice finite automata and its application to the decomposition of lattice languages. Fuzzy Sets Syst, 2007, 158: 1423–1436

    Article  MathSciNet  Google Scholar 

  125. Solov’ev V V. Minimization of mealy finite-state machines by using the values of the output variables for state assignment. J Comput Syst Sci Int, 2017, 56: 96–104

    Article  MathSciNet  Google Scholar 

  126. Solov’ev V V. Minimization of mealy finite state machines via internal state merging. J Commun Technol Electron, 2011, 56: 207–213

    Article  Google Scholar 

  127. Solov’ev V V. Minimization of Moore finite automata by internal state gluing. J Commun Technol Electron, 2010, 55: 584–592

    Article  Google Scholar 

  128. Klimowicz A S, Solov’ev V V. Minimization of incompletely specified mealy finite-state machines by merging two internal states. J Comput Syst Sci Int, 2013, 52: 400–409

    Article  MathSciNet  Google Scholar 

  129. Gören S, Ferguson F J. On state reduction of incompletely specified finite state machines. Comput Electrical Eng, 2007, 33: 58–69

    Article  Google Scholar 

  130. Liu D S, Huang Z P, Zhang Y M, et al. Efficient deterministic finite automata minimization based on backward depth information. Plos One, 2016, 11: e0165864

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. U1804150, 62073124, 61973175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongyi Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Cheng, D., Feng, JE. et al. Survey on applications of algebraic state space theory of logical systems to finite state machines. Sci. China Inf. Sci. 66, 111201 (2023). https://doi.org/10.1007/s11432-022-3538-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3538-4

Keywords

Navigation