Skip to main content
Log in

Quantum spectral clustering algorithm for unsupervised learning

  • Research Paper
  • Special Focus on Quantum Information
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Clustering is one of the most crucial problems in unsupervised learning, and the well-known k-means algorithm can be implemented on a quantum computer with a significant speedup. However, for the clustering problems that cannot be solved using the k-means algorithm, a powerful method called spectral clustering is used. In this study, we propose a circuit design to implement spectral clustering on a quantum processor with substantial speedup by initializing the processor into a maximally entangled state and encoding the data information into an efficiently simulatable Hamiltonian. Compared to the established quantum k-means algorithms, our method does not require a quantum random access memory or a quantum adiabatic process. It relies on an appropriate embedding of quantum phase estimation into Grover’s search to gain the quantum speedup. Simulations demonstrate that our method effectively solves clustering problems and is an important supplement to quantum k-means algorithm for unsupervised learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Biamonte J, Wittek P, Pancotti N, et al. Quantum machine learning. Nature, 2017, 549: 195–202

    Article  Google Scholar 

  2. Wiebe N, Braun D, Lloyd S. Quantum algorithm for data fitting. Phys Rev Lett, 2012, 109: 050505

    Article  Google Scholar 

  3. Rebentrost P, Mohseni M, Lloyd S. Quantum support vector machine for big data classification. Phys Rev Lett, 2014, 113: 130503

    Article  Google Scholar 

  4. Ye Z K, Li L Z, Situ H Z, et al. Quantum speedup of twin support vector machines. Sci China Inf Sci, 2020, 63: 189501

    Article  MathSciNet  Google Scholar 

  5. Lloyd S, Mohseni M, Rebentrost P. Quantum principal component analysis. Nat Phys, 2014, 10: 631–633

    Article  Google Scholar 

  6. Amin M H, Andriyash E, Rolfe J, et al. Quantum Boltzmann machine. Phys Rev X, 2018, 8: 021050

    Google Scholar 

  7. Dong D Y, Chen C L, Li H X, et al. Quantum reinforcement learning. IEEE Trans Syst Man Cybern B, 2008, 38: 1207–1220

    Article  Google Scholar 

  8. Chandola V, Banerjee A, Kumar V. Anomaly detection: a survey. ACM Comput Surv, 2009, 41: 1–58

    Article  Google Scholar 

  9. van der Maaten L, Postma E, van den Herik J, et al. Dimensionality reduction: a comparative. J Mach Learn Res, 2009, 10: 66–71

    Google Scholar 

  10. Jain A K, Murty M N, Flynn P J. Data clustering: a review. ACM Comput Surv, 1999, 31: 264–323

    Article  Google Scholar 

  11. Aïmeur E, Brassard G, Gambs S. Quantum clustering algorithms. In: Proceedings of the 24th International Conference on Machine Learning, Corvalis, 2007. 1–8

  12. Giovannetti V, Lloyd S, Maccone L. Quantum random access memory. Phys Rev Lett, 2008, 100: 160501

    Article  MathSciNet  MATH  Google Scholar 

  13. Farhi E, Goldstone J, Gutmann S, et al. Quantum computation by adiabatic evolution. 2000. ArXiv:quant-ph/0001106v1

  14. Lloyd S, Mohseni M, Rebentrost P. Quantum algorithms for supervised and unsupervised machine learning. 2013. ArXiv:1307.0411

  15. Ng A, Jordan M, Weiss Y. On spectral clustering: analysis and an algorithm. In: Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic, Vancouver, 2001. 849–856

  16. von Luxburg U. A tutorial on spectral clustering. Stat Comput, 2007, 17: 395–416

    Article  MathSciNet  Google Scholar 

  17. Daskin A. Quantum spectral clustering through a biased phase estimation algorithm. Turk World Math Soc J Appl Eng Math, 2017, 10: 1

    Google Scholar 

  18. Kerenidis I, Landman J. Quantum spectral clustering. Phys Rev A, 2021, 103: 042415

    Article  MathSciNet  Google Scholar 

  19. Grover L K. A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, Philadelphia, 1996. 212–219

  20. Kitaev A Y. Quantum measurements and the abelian stabilizer problem. 1995. ArXiv:quant-ph/9511026

  21. Berry D W, Ahokas G, Cleve R, et al. Efficient quantum algorithms for simulating sparse hamiltonians. Commun Math Phys, 2007, 270: 359–371

    Article  MathSciNet  MATH  Google Scholar 

  22. Wilkinson J H. The Algebraic Eigenvalue Problem. Oxford: Oxford University Press, 1988. 570–646

    Google Scholar 

  23. Poulin D, Wocjan P. Sampling from the thermal quantum Gibbs state and evaluating partition functions with a quantum computer. Phys Rev Lett, 2009, 103: 220502

    Article  MathSciNet  Google Scholar 

  24. Watrous J. Quantum computation: lecture notes. 2006. https://cs.uwaterloo.ca/∼watrous/QC-notes/

  25. Yoder T J, Low G H, Chuang I L. Fixed-point quantum search with an optimal number of queries. Phys Rev Lett, 2014, 113: 210501

    Article  Google Scholar 

  26. Brassard G, Høyer P, Tapp A. Quantum counting. In: Automata, Languages and Programming. Berlin: Springer, 1998. 820–831

    Chapter  MATH  Google Scholar 

  27. Zha H, He X, Ding C, et al. Spectral relaxation for k-means clustering. In: Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic, Vancouver, 2001. 1057–1064

  28. Russell S J, Norvig P. Artificial Intelligence: A Modern Approach. Upper Saddle River: Prentice Hall, 2010. 131–146

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (Grant No. 2018YFA0306703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoting Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Huang, Y., Jin, S. et al. Quantum spectral clustering algorithm for unsupervised learning. Sci. China Inf. Sci. 65, 200504 (2022). https://doi.org/10.1007/s11432-022-3492-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3492-x

Keywords

Navigation