Skip to main content
Log in

A logical network approximation to optimal control on a continuous domain and its application to HEV control

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The finite-time horizon optimal control problem is investigated for discrete-time dynamical systems defined on a continuous domain. First, the original optimal control problem in the continuous domain is approximated as one on a finite-valued domain based on a special quantification process. Under suitable assumptions, convergence analysis of the approximate optimal cost of the quantified system to the optimal cost of the original system was established with error estimation. Thereafter, the approximate problem is solved using a logical network-based method that is proposed based on the semi-tensor product of the matrix. Finally, the proposed scheme is applied to deal with the optimal control problem of a hybrid electric vehicle (HEV) powertrain system, and its effectiveness is shown by a series of simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Eriksson L, Nielsen L. Modeling and Control of Engines and Drivelines. Hoboken: John Wiley & Sons, 2014

    Book  Google Scholar 

  2. Zhang J, Shen T, Kako J. Short-term optimal energy management of power-split hybrid electric vehicles under velocity tracking control. IEEE Trans Veh Technol, 2020, 69: 182–193

    Article  Google Scholar 

  3. Bock H G, Plitt K J. A multiple shooting algorithm for direct solution of optimal control problems. IFAC Proc Vol, 1984, 17: 1603–1608

    Article  Google Scholar 

  4. Banks S P, Dinesh K. Approximate optimal control and stability of nonlinear finite-and infinite-dimensional systems. Ann Oper Res, 2000, 98: 19–44

    Article  MathSciNet  MATH  Google Scholar 

  5. Delprat S, Lauber J, Guerra T M, et al. Control of a parallel hybrid powertrain: optimal control. IEEE Trans Veh Technol, 2004, 53: 872–881

    Article  Google Scholar 

  6. Serrao L, Onori S, Rizzoni G. A comparative analysis of energy management strategies for hybrid electric vehicles. J Dynamic Syst Measurement Control, 2011, 133: 031012

    Article  Google Scholar 

  7. Martinez C M, Hu X, Cao D, et al. Energy management in plug-in hybrid electric vehicles: recent progress and a connected vehicles perspective. IEEE Trans Veh Technol, 2016, 66: 4534–4549

    Article  Google Scholar 

  8. Yang Y, Hu X, Pei H, et al. Comparison of power-split and parallel hybrid powertrain architectures with a single electric machine: dynamic programming approach. Appl Energy, 2016, 168: 683–690

    Article  Google Scholar 

  9. Wang R, Lukic S M. Dynamic programming technique in hybrid electric vehicle optimization. In: Proceedings of IEEE International Electric Vehicle Conference (IEVC), 2012. 1–8

  10. Tang L, Rizzoni G, Lukas M. Comparison of dynamic programming-based energy management strategies including battery life optimization. In: Proceedings of International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), 2016. 1–6

  11. Koot M, Kessels J T B A, de Jager B, et al. Energy management strategies for vehicular electric power systems. IEEE Trans Veh Technol, 2005, 54: 771–782

    Article  Google Scholar 

  12. Chen Z, Mi C C, Xu J, et al. Energy management for a power-split plug-in hybrid electric vehicle based on dynamic programming and neural networks. IEEE Trans Veh Technol, 2014, 63: 1567–1580

    Article  Google Scholar 

  13. Yang Y, Pei H, Hu X, et al. Fuel economy optimization of power split hybrid vehicles: a rapid dynamic programming approach. Energy, 2019, 166: 929–938

    Article  Google Scholar 

  14. Pei D, Leamy M J. Dynamic programming-informed equivalent cost minimization control strategies for hybrid-electric vehicles. J Dyn Syst Meas Control, 2013, 135: 051013

    Article  Google Scholar 

  15. Larsson V, Johannesson L, Egardt B. Analytic solutions to the dynamic programming subproblem in hybrid vehicle energy management. IEEE Trans Veh Technol, 2014, 64: 1458–1467

    Article  Google Scholar 

  16. Kauffman S A. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 1969, 22: 437–467

    Article  MathSciNet  Google Scholar 

  17. Truemper K, Truemper K. Design of Logic-based Intelligent Systems. Hoboken: John Wiley & Sons, 2004

    Book  MATH  Google Scholar 

  18. Cheng D, Qi H. A linear representation of dynamics of boolean networks. IEEE Trans Automat Contr, 2010, 55: 2251–2258

    Article  MathSciNet  MATH  Google Scholar 

  19. Lu J Q, Li B W, Zhong J. A novel synthesis method for reliable feedback shift registers via Boolean networks. Sci China Inf Sci, 2021, 64: 152207

    Article  MathSciNet  Google Scholar 

  20. Yerudkar A, Del Vecchio C, Glielmo L. Feedback stabilization control design for switched Boolean control networks. Automatica, 2020, 116: 108934

    Article  MathSciNet  MATH  Google Scholar 

  21. Zheng Y T, Li H T, Feng J E. State-feedback set stabilization of logical control networks with state-dependent delay. Sci China Inf Sci, 2021, 64: 169203

    Article  MathSciNet  Google Scholar 

  22. Li H, Ding X. A control Lyapunov function approach to feedback stabilization of logical control networks. SIAM J Control Optim, 2019, 57: 810–831

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhu S Y, Liu Y, Lou Y J, et al. Stabilization of logical control networks: an event-triggered control approach. Sci China Inf Sci, 2020, 63: 112203

    Article  MathSciNet  Google Scholar 

  24. Liu Y, Cao J D, Wang L Q, et al. On pinning reachability of probabilistic Boolean control networks. Sci China Inf Sci, 2020, 63: 169201

    Article  MathSciNet  Google Scholar 

  25. Chen H, Wang Z, Shen B, et al. Model evaluation of the stochastic Boolean control networks. IEEE Trans Automat Contr, 2022, 67: 4146–4153

    Article  MathSciNet  MATH  Google Scholar 

  26. Pal R, Datta A, Dougherty E R. Optimal infinite-horizon control for probabilistic Boolean networks. IEEE Trans Signal Process, 2006, 54: 2375–2387

    Article  MATH  Google Scholar 

  27. Liu Q, Guo X, Zhou T. Optimal control for probabilistic Boolean networks. IET Syst Biol, 2010, 4: 99–107

    Article  Google Scholar 

  28. Toyoda M, Wu Y. On optimal time-varying feedback controllability for probabilistic Boolean control networks. IEEE Trans Neural Netw Learn Syst, 2020, 31: 2202–2208

    Article  MathSciNet  Google Scholar 

  29. Wu Y, Shen T. An algebraic expression of finite horizon optimal control algorithm for stochastic logical dynamical systems. Syst Control Lett, 2015, 82: 108–114

    Article  MathSciNet  MATH  Google Scholar 

  30. Wu Y, Sun X M, Zhao X, et al. Optimal control of Boolean control networks with average cost: a policy iteration approach. Automatica, 2019, 100: 378–387

    Article  MathSciNet  MATH  Google Scholar 

  31. Wu Y, Guo Y, Toyoda M. Policy iteration approach to the infinite horizon average optimal control of probabilistic Boolean networks. IEEE Trans Neural Netw Learn Syst, 2020, 32: 2910–2924

    Article  MathSciNet  Google Scholar 

  32. Wu Y, Kumar M, Shen T. A stochastic logical system approach to model and optimal control of cyclic variation of residual gas fraction in combustion engines. Appl Thermal Eng, 2016, 93: 251–259

    Article  Google Scholar 

  33. Zhang J Y, Wu Y H. A stochastic logical model-based approximate solution for energy management problem of HEVs. Sci China Inf Sci, 2018, 61: 070207

    Article  Google Scholar 

  34. Papagiannis G, Moschoyiannis S. Deep reinforcement learning for control of probabilistic boolean networks. In: Proceedings of International Conference on Complex Networks and Their Applications. Berlin: Springer, 2020. 361–371

    Google Scholar 

  35. Teo K L, Li B, Yu C, et al. Applied and computational optimal control: a control parametrization approach. In: Springer Optimization and Its Applications. Berlin: Springer, 2021

    Book  MATH  Google Scholar 

  36. Goh C J, Teo K L. Control parametrization: a unified approach to optimal control problems with general constraints. Automatica, 1988, 24: 3–18

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang J, Wu Y, Shen T. Logical network-based approximate solution of hev energy management problems. In: Proceedings of the 46th Annual Conference of the IEEE Industrial Electronics Society, 2020. 2044–2049

  38. Cheng D, Qi H, Li Z. Analysis and Control of Boolean Networks: A Semi-Tensor Product Approach. Berlin: Springer, 2011

    Book  MATH  Google Scholar 

  39. Kirk D E. Optimal Control Theory: An Introduction. New York: Dover Publications, 2004

    Google Scholar 

  40. Mock P, Kühlwein J, Tietge U, et al. The WLTP: how a new test procedure for cars will affect fuel consumption values in the EU. Int Council Clean Trans, 2014, 9: 35–47

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Grant Nos. 62173062, 61973053, 61773090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangyan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Zhang, J. & Shen, T. A logical network approximation to optimal control on a continuous domain and its application to HEV control. Sci. China Inf. Sci. 65, 212203 (2022). https://doi.org/10.1007/s11432-021-3446-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-021-3446-8

Keywords

Navigation