Skip to main content
Log in

Robust online energy efficiency optimization for distributed multi-cell massive MIMO networks

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper studies the energy efficiency (EE) oriented precoding design in multi-cell massive multiple-input multiple-output (MIMO) systems, with only statistical channel state information (CSI) at the transmitter. During the transmission, as the channel varies dynamically with time and the previously obtained CSI becomes outdated, the base stations must adjust their transmit policies accordingly. To tackle this issue, we propose an online EE maximization algorithm that can achieve a no-regret transmission; i.e., the performance of this online method gradually approaches that of the fixed offline method which has full knowledge of the future CSI. Specifically, we first construct the online EE optimization problem in a distributed way to reduce the information required to be exchanged between cells. Then, we apply the large-dimensional random matrix theory to lower the calculation complexity, and the Charnes-Cooper transform to address the nonconvexity of the problem, respectively. The online gradient ascent method is utilized to perform this no-regret power allocation strategy based on all past CSI. We also assess the robustness of the algorithm to estimation error of statistical CSI under some mild conditions which can usually be satisfied in practice. Numerical results demonstrate the no-regret property and the robustness of the proposed online algorithm for energy efficient multi-cell massive MIMO transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qi Q, Chen X, Lei L, et al. Outage-constrained robust design for sustainable B5G cellular Internet of Things. IEEE Trans Wireless Commun, 2019, 18: 5780–5790

    Article  Google Scholar 

  2. You X, Wang C X, Huang J, et al. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Sci China Inf Sci, 2021, 64: 110301

    Article  Google Scholar 

  3. Ngo H Q, Larsson E G, Marzetta T L. Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans Commun, 2013, 61: 1436–1449

    Article  Google Scholar 

  4. Marzetta T L. Fundamentals of Massive MIMO. New York: Cambridge University Press, 2016

    Book  Google Scholar 

  5. Bjornson E, Larsson E G, Marzetta T L. Massive MIMO: ten myths and one critical question. IEEE Commun Mag, 2016, 54: 114–123

    Article  Google Scholar 

  6. Zhang J, Bjornson E, Matthaiou M, et al. Prospective multiple antenna technologies for beyond 5G. IEEE J Sel Areas Commun, 2020, 38: 1637–1660

    Article  Google Scholar 

  7. Interdonato G, Karlsson M, Bjornson E, et al. Local partial zero-forcing precoding for cell-free massive MIMO. IEEE Trans Wireless Commun, 2020, 19: 4758–4774

    Article  Google Scholar 

  8. Zappone A, Jorswieck E. Energy efficiency in wireless networks via fractional programming theory. FNT Commun Inf Theor, 2015, 11: 185–396

    Article  Google Scholar 

  9. You L, Xiong J, Yi X, et al. Energy efficiency optimization for downlink massive MIMO with statistical CSIT. IEEE Trans Wireless Commun, 2020, 19: 2684–2698

    Article  Google Scholar 

  10. You L, Xiong J, Zappone A, et al. Spectral efficiency and energy efficiency tradeoff in massive MIMO downlink transmission with statistical CSIT. IEEE Trans Signal Process, 2020, 68: 2645–2659

    Article  MathSciNet  Google Scholar 

  11. Gesbert D, Hanly S, Huang H, et al. Multi-cell MIMO cooperative networks: a new look at interference. IEEE J Sel Areas Commun, 2010, 28: 1380–1408

    Article  Google Scholar 

  12. Sun C, Gao X, Ding Z. BDMA in multicell massive MIMO communications: power allocation algorithms. IEEE Trans Signal Process, 2017, 65: 2962–2974

    Article  MathSciNet  Google Scholar 

  13. He S, Huang Y, Jin S, et al. Coordinated beamforming for energy efficient transmission in multicell multiuser systems. IEEE Trans Commun, 2013, 61: 4961–4971

    Article  Google Scholar 

  14. Ng B L, Evans J S, Hanly S V, et al. Distributed downlink beamforming with cooperative base stations. IEEE Trans Inform Theor, 2008, 54: 5491–5499

    Article  MathSciNet  Google Scholar 

  15. You L, Huang Y, Zhang D, et al. Energy efficiency optimization for multi-cell massive MIMO: centralized and distributed power allocation algorithms. IEEE Trans Commun, 2021, 69: 5228–5242

    Article  Google Scholar 

  16. Belmega E V, Mertikopoulos P, Negrel R, et al. Online convex optimization and no-regret learning: algorithms, guarantees and applications. 2020. ArXiv:1804.04529

  17. Hannan J. Approximation to Bayes risk in repeated play. In: Proceedings of Contributions to the Theory of Games. Princeton: Princeton University Press, 1957. 97–139

    Google Scholar 

  18. Mertikopoulos P, Belmega E V. Learning to be green: robust energy efficiency maximization in dynamic MIMO-OFDM systems. IEEE J Sel Areas Commun, 2016, 34: 743–757

    Article  Google Scholar 

  19. Marcastel A, Belmega E V, Mertikopoulos P, et al. Online power optimization in feedback-limited, dynamic and unpredictable IoT networks. IEEE Trans Signal Process, 2019, 67: 2987–3000

    Article  MathSciNet  Google Scholar 

  20. You L, Gao X Q, Xia X G, et al. Pilot reuse for massive MIMO transmission over spatially correlated Rayleigh fading channels. IEEE Trans Wireless Commun, 2015, 14: 3352–3366

    Article  Google Scholar 

  21. Barriac G, Madhow U. Space-time precoding for mean and covariance feedback: application to wideband OFDM. IEEE Trans Commun, 2006, 54: 96–107

    Article  Google Scholar 

  22. Barriac G, Madhow U. Space-time communication for OFDM with implicit channel feedback. IEEE Trans Inform Theor, 2004, 50: 3111–3129

    Article  MathSciNet  Google Scholar 

  23. Chen Y, Wang Y, Jiao L. Robust transmission for reconfigurable intelligent surface aided millimeter wave vehicular communications with statistical CSI. IEEE Trans Wireless Commun, 2022, 21: 928–944

    Article  Google Scholar 

  24. Yu X, Guo J, Li X, et al. Deep learning based user scheduling for massive MIMO downlink system. Sci China Inf Sci, 2021, 64: 182304

    Article  MathSciNet  Google Scholar 

  25. Weichselberger W, Herdin M, Ozcelik H, et al. A stochastic MIMO channel model with joint correlation of both link ends. IEEE Trans Wireless Commun, 2006, 5: 90–100

    Article  Google Scholar 

  26. Wen C K, Jin S, Wong K K. On the sum-rate of multiuser MIMO uplink channels with jointly-correlated Rician fading. IEEE Trans Commun, 2011, 59: 2883–2895

    Article  Google Scholar 

  27. Wu Y, Wen C K, Xiao C, et al. Linear precoding for the MIMO multiple access channel with finite alphabet inputs and statistical CSI. IEEE Trans Wireless Commun, 2015, 14: 983–997

    Article  Google Scholar 

  28. Gao X Q, Jiang B, Li X, et al. Statistical eigenmode transmission over jointly correlated MIMO channels. IEEE Trans Inform Theor, 2009, 55: 3735–3750

    Article  MathSciNet  Google Scholar 

  29. Adhikary A, Nam J, Ahn J Y, et al. Joint spatial division and multiplexing-the large-scale array regime. IEEE Trans Inform Theor, 2013, 59: 6441–6463

    Article  MathSciNet  Google Scholar 

  30. Hassibi B, Hochwald B M. How much training is needed in multiple-antenna wireless links? IEEE Trans Inform Theor, 2003, 49: 951–963

    Article  Google Scholar 

  31. Lu A A, Gao X, Zhong W, et al. Robust transmission for massive MIMO downlink with imperfect CSI. IEEE Trans Commun, 2019, 67: 5362–5376

    Article  Google Scholar 

  32. Wu W, Gao X, Wu Y, et al. Beam domain secure transmission for massive MIMO communications. IEEE Trans Veh Technol, 2018, 67: 7113–7127

    Article  Google Scholar 

  33. Sun C, Gao X, Jin S, et al. Beam division multiple access transmission for massive MIMO communications. IEEE Trans Commun, 2015, 63: 2170–2184

    Article  Google Scholar 

  34. Ng D W K, Lo E S, Schober R. Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas. IEEE Trans Wireless Commun, 2012, 11: 3292–3304

    Article  Google Scholar 

  35. You L, Wang W, Gao X. Energy-efficient multicast precoding for massive MIMO transmission with statistical CSI. Energies, 2018, 11: 3175

    Article  Google Scholar 

  36. Maghsudi S, Stanczak S. Joint channel selection and power control in infrastructureless wireless networks: a multiplayer multiarmed bandit framework. IEEE Trans Veh Technol, 2015, 64: 4565–4578

    Article  Google Scholar 

  37. Shalev-Shwartz S. Online learning and online convex optimization. FNT Machine Learn, 2011, 4: 107–194

    Article  Google Scholar 

  38. Cesa-Bianchi N, Lugosi G. Prediction, Learning, and Games. Cambridge: Cambridge University Press, 2006

    Book  Google Scholar 

  39. Hazan E. A survey: the convex optimization approach to regret minimization. In: Proceedings of Optimization for Machine Learning, Cambridge: MIT Press, 2012. 287–304

    Google Scholar 

  40. Lu A A, Gao X, Xiao C. Free deterministic equivalents for the analysis of MIMO multiple access channel. IEEE Trans Inform Theor, 2016, 62: 4604–4629

    Article  MathSciNet  Google Scholar 

  41. Couillet R, Debbah M. Random Matrix Methods for Wireless Communications. New York: Cambridge University Press, 2011

    Book  Google Scholar 

  42. Shen K, Yu W. Fractional programming for communication systems-part I: power control and beamforming. IEEE Trans Signal Process, 2018, 66: 2616–2630

    Article  MathSciNet  Google Scholar 

  43. Boyd S, Vandenberghe L. Convex Optimization. New York: Cambridge University Press, 2004

    Book  Google Scholar 

  44. Charnes A, Cooper W W. Programming with linear fractional functionals. Naval Res Logist, 1962, 9: 181–186

    Article  MathSciNet  Google Scholar 

  45. Maculan N, de Paula J G G. A linear-time median-finding algorithm for projecting a vector on the simplex of Rn. Operations Res Lett, 1989, 8: 219–222

    Article  MathSciNet  Google Scholar 

  46. Kwon J, Mertikopoulos P. A continuous-time approach to online optimization. 2014. ArXiv:1401.6956

  47. Davie A M, Stothers A J. Improved bound for complexity of matrix multiplication. Proc R Soc Edinburgh-Sect Math, 2013, 143: 351–369

    Article  MathSciNet  Google Scholar 

  48. Mertikopoulos P, Moustakas A L. Learning in an uncertain world: MIMO covariance matrix optimization with imperfect feedback. IEEE Trans Signal Process, 2016, 64: 5–18

    Article  MathSciNet  Google Scholar 

  49. Stojanovic M, Proakis J G, Catipovic J A. Analysis of the impact of channel estimation errors on the performance of a decision-feedback equalizer in fading multipath channels. IEEE Trans Commun, 1995, 43: 877–886

    Article  Google Scholar 

  50. Pascual-Iserte A, Palomar D P, Perez-Neira A I, et al. A robust maximin approach for MIMO communications with imperfect channel state information based on convex optimization. IEEE Trans Signal Process, 2006, 54: 346–360

    Article  Google Scholar 

  51. Zhang L, Liang Y-C, Xin Y, et al. Robust cognitive beamforming with partial channel state information. IEEE Trans Wireless Commun, 2009, 8: 4143–4153

    Article  Google Scholar 

  52. Kyösti P, Meinilä J, Hentila L, et al. IST-4-027756 WINNER II D1.1.2 V1.2 WINNER II Channel Models. 2008. https://www.researchgate.net/publication/234055761_WINNER_II_channel_models

  53. Dietrich F A, Utschick W. Pilot-assisted channel estimation based on second-order statistics. IEEE Trans Signal Process, 2005, 53: 1178–1193

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (Grant No. 2018YFB1801103), Jiangsu Province Basic Research Project (Grant No. BK20192002), National Natural Science Foundation of China (Grant No. 61801114), Fundamental Research Funds for the Central Universities (Grant 2242021R41148), and Young Elite Scientist Sponsorship Program by China Institute of Communications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiqi Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, L., Huang, Y., Zhong, W. et al. Robust online energy efficiency optimization for distributed multi-cell massive MIMO networks. Sci. China Inf. Sci. 66, 132302 (2023). https://doi.org/10.1007/s11432-021-3437-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-021-3437-8

Keywords

Navigation