Skip to main content
Log in

Recent progress of integrated circuits and optoelectronic chips

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Integrated circuits (ICs) and optoelectronic chips are the foundation stones of the modern information society. The IC industry has been driven by the so-called “Moore’s law” in the past 60 years, and now has entered the post Moore’s law era. In this paper, we review the recent progress of ICs and optoelectronic chips. The research status, technical challenges and development trend of devices, chips and integrated technologies of typical IC and optoelectronic chips are focused on. The main contents include the development law of IC and optoelectronic chip technology, the IC design and processing technology, emerging memory and chip architecture, brain-like chip structure and its mechanism, heterogeneous integration, quantum chip technology, silicon photonics chip technology, integrated microwave photonic chip, and optoelectronic hybrid integrated chip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Hao Y, Jia X Z, Dong G, et al. Introduction to Microelectronics (in Chinese). 2nd ed. Beijing: Publishing House of Electronics Industry, 2011

    Google Scholar 

  2. Hao Y, Zhang J F, Shen B, et al. Progress in group III nitride semiconductor electronic devices. J Semicond, 2012, 33: 081001

    Article  Google Scholar 

  3. Tsao J Y, Chowdhury S, Hollis M A, et al. Ultrawide-bandgap semiconductors: research opportunities and challenges. Adv Electron Mater, 2018, 4: 1600501

    Article  Google Scholar 

  4. Zhou H, Zhang J C, Zhang C F, et al. A review of the most recent progresses of state-of-art gallium oxide power devices. J Semicond, 2019, 40: 011803

    Article  Google Scholar 

  5. Zhang H P, Yuan L, Tang X Y, et al. Progress of ultra-wide bandgap Ga2O3 semiconductor materials in power MOSFETs. IEEE Trans Power Electron, 2020, 35: 5157–5179

    Article  Google Scholar 

  6. Moore G E. Cramming more components onto integrated circuits. Electronics, 1965, 38: 114–117

    Google Scholar 

  7. Moore G E. Progress in digital integrated electronics. In: Proceedings of IEEE Int’l Electron Devices Meeting Technical Digest, 1975. 11–13

  8. Dennard R H, Gaensslen F H, Yu H N, et al. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J Solid-State Circ, 1974, 9: 256–268

    Article  Google Scholar 

  9. Salahuddin S, Ni K, Datta S. The era of hyper-scaling in electronics. Nat Electron, 2018, 1: 442–450

    Article  Google Scholar 

  10. Shalf J M, Leland R. Computing beyond Moore’s law. Computer, 2015, 48: 14–23

    Article  Google Scholar 

  11. Arden W, Brillouët M, Cogez P, et al. “More-than-Moore” White Paper. IRTS, 2010

  12. Khan H N, Hounshell D A, Fuchs E R H. Science and research policy at the end of Moore’s law. Nat Electron, 2018, 1: 14–21

    Article  Google Scholar 

  13. Borkar S. Design challenges of technology scaling. IEEE Micro, 1999, 19: 23–29

    Article  Google Scholar 

  14. Collaert N. Device architectures for the 5 nm technology node and beyond. 2016. https://bjpcjp.github.io/pdfs/chips/SEMICON_Taiwan_2016_collaert.pdf

  15. Jacob A P, Xie R L, Sung M G, et al. Scaling challenges for advanced CMOS Devices. Int J High Speeed Electron Syst, 2017, 26: 1740001

    Article  Google Scholar 

  16. Barraud S, Previtali B, Vizioz C, et al. 7-levels-stacked nanosheet GAA transistors for high performance computing. In: Proceedings of IEEE Symposium on VLSI Technology, 2020

  17. Veloso A, Eneman G, Huynh-Bao T. Vertical nanowire and nanosheet FETs: device features, novel schemes for improved process control and enhanced mobility, potential for faster & more energy efficient circuits. In: Proceedings of IEEE International Electron Devices Meeting, 2019. 230–233

  18. Perrine B. 3D sequential integration. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2019

  19. Han G Q, Hao Y. Design technology co-optimization towards sub-3 nm technology nodes. J Semicond, 2021, 42: 020301

    Article  Google Scholar 

  20. Borghetti J, Snider G S, Kuekes P J, et al. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature, 2010, 464: 873–876

    Article  Google Scholar 

  21. Chi P, Li S C, Xu C, et al. PRIME: a novel processing-in-memory architecture for neural network computation in ReRAM-based main memory. SIGARCH Comput Archit News, 2016, 44: 27–39

    Article  Google Scholar 

  22. Manipatruni S, Nikonov D E, Lin C C, et al. Scalable energy-efficient magnetoelectric spin-orbit logic. Nature, 2019, 565: 35–42

    Article  Google Scholar 

  23. Zhang W Q, Gao B, Tang J S, et al. Neuro-inspired computing chips. Nat Electron, 2020, 3: 371–382

    Article  Google Scholar 

  24. Hickmott T W. Low-frequency negative resistance in thin anodic oxide films. J Appl Phys, 1962, 33: 2669–2682

    Article  Google Scholar 

  25. Beck A, Bednorz J G, Gerber C, et al. Reproducible switching effect in thin oxide films for memory applications. Appl Phys Lett, 2000, 77: 139–141

    Article  Google Scholar 

  26. Ovshinsky S R. Reversible electrical switching phenomena in disordered structures. Phys Rev Lett, 1968, 21: 1450–1453

    Article  Google Scholar 

  27. Wong H S P, Raoux S, Kim S B, et al. Phase change memory. Proc IEEE, 2010, 98: 2201–2227

    Article  Google Scholar 

  28. Chappert C, Fert A, van Dau F N. The emergence of spin electronics in data storage. Nat Mater, 2007, 6: 813–823

    Article  Google Scholar 

  29. Wang X B, Chen Y R, Xi H W, et al. Spintronic memristor through spin-torque-induced magnetization motion. IEEE Electron Device Lett, 2009, 30: 294–297

    Article  Google Scholar 

  30. Rizzo N D, Houssameddine D, Janesky J, et al. A fully functional 64 Mb DDR3 ST-MRAM built on 90 nm CMOS technology. IEEE Trans Magn, 2013, 49: 4441–4446

    Article  Google Scholar 

  31. Lee K, Kim W J, Lee J H, et al. 1 Gbit high density embedded STT-MRAM in 28 nm FDSOI technology. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2019

  32. Jerry M, Chen P Y, Zhang J C, et al. Ferroelectric FET analog synapse for acceleration of deep neural network training. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2017

  33. Tang J, Bishop D, Kim S, et al. ECRAM as scalable synaptic cell for high-speed, low-power neuromorphic computing. In: Proceedings of IEEE International Electron Devices Meeting, 2018

  34. Ni K, Yin X Z, Laguna A F, et al. Ferroelectric ternary content-addressable memory for one-shot learning. Nat Electron, 2019, 2: 521–529

    Article  Google Scholar 

  35. Li B Z, Gu J J, Jiang W Z. Artificial intelligence (AI) chip technology review. In: Proceedings of International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), 2019. 114–117

  36. Akopyan F, Sawada J, Cassidy A, et al. TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip. IEEE Trans Comput-Aided Des Integr Circ Syst, 2015, 34: 1537–1557

    Article  Google Scholar 

  37. Davies M, Srinivasa N, Lin T H, et al. Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro, 2018, 38: 82–99

    Article  Google Scholar 

  38. Naffziger S, Lepak K, Paraschou M, et al. 2.2 AMD chiplet architecture for high-performance server and desktop products. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2020. 44–45

  39. You X H, Zhang C, Tan X S, et al. AI for 5G: research directions and paradigms. Sci China Inf Sci, 2019, 62: 021301

    Article  Google Scholar 

  40. Ali A, Dinc H, Bhoraskar P, et al. A 12b 18 GS/s RF sampling ADC with an integrated wideband track-and-hold amplifier and background calibration. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2020. 250–252

  41. Shibata H, Taylor G, Schell B, et al. An 800 MHz-BW VCO-based continuous-time pipelined ADC with inherent anti-aliasing and on-chip digital reconstruction filter. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2020. 260–262

  42. Holt W M. Moore’s law: a path going forward. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2016. 8–13

  43. Zhu S, Xu B W, Wu B, et al. A skew-free 10 GS/s 6 bit CMOS ADC with compact time-domain signal folding and inherent DEM. IEEE J Solid-State Circ, 2016, 51: 1785–1796

    Article  Google Scholar 

  44. Seok E, Cao C H, Shim D, et al. A 410 GHz CMOS push-push oscillator with an on-chip patch antenna. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2008. 472–473

  45. Sengupta K, Hajimiri A. A 0.28 THz 4×4 power-generation and beam-steering array. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2012. 256–258

  46. Han R, Afshari E. A 260 GHz broadband source with 1.1 mW continuous-wave radiated power and EIRP of 15.7 dBm in 65 nm CMOS. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2013. 138–139

  47. Tousi Y, Afshari E. A scalable THz 2D phased array with +17 dBm of EIRP at 338 GHz in 65 nm bulk CMOS. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2014. 258–259

  48. Meng X Y, Chi B Y, Wang Z H. CMOS cross-coupled oscillator operating close to the transistor’s fmax. IEEE Microw Wirel Compon Lett, 2017, 27: 1131–1133

    Article  Google Scholar 

  49. Park J D, Kang S, Thyagarajan S V, et al. A 260 GHz fully integrated CMOS transceiver for wireless chip-to-chip communication. In: Proceedings of Symposium on VLSI Circuits (VLSIC), 2012. 48–49

  50. Wang Z, Chiang P Y, Nazari P, et al. A 210 GHz fully integrated differential transceiver with fundamental-frequency VCO in 32 nm SOI CMOS. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2013. 136–137

  51. Deng X D, Li Y, Li J, et al. A 320-GHz 1×4 fully integrated phased array transmitter using 0.13-µm SiGe BiCMOS technology. IEEE Trans THz Sci Technol, 2015, 5: 930–940

    Article  Google Scholar 

  52. Brayton R, Cong J. Electronic Design Automation: Past, Present, and Future. NSF Workshop Report, 2009

  53. Brayton R, Cong J. NSF workshop on EDA: past, present, and future (part 1). IEEE Des Test Comput, 2010, 27(2): 68–74

    Article  Google Scholar 

  54. Brayton R, Cong J. NSF workshop on EDA: past, present, and future (part 2). IEEE Des Test Comput, 2010, 27(3): 62–74

    Article  Google Scholar 

  55. Chen W, Bottoms W R. Heterogeneous integration Roadmap. In: Proceedings of International Conference on Electronics Packaging (ICEP), 2017

  56. Hancock T M, Demmin J. Heterogeneous and 3D integration at DARPA. In: Proceedings of IEEE International 3D Systems Integration Conference, 2019. 27–29

  57. Gutierrez-Aitken A, Scott D, Sato K, et al. Diverse accessible heterogeneous integration (DAHI) foundry at Northrop Grumman Aerospace Systems (NGAS). ECS Trans, 2017, 80: 125–134

    Article  Google Scholar 

  58. Wu L S, Zhao Y, Shen H C, et al. Heterogeneous integration of GaAs pHEMT and Si CMOS on the same chip. Chin Phys B, 2016, 25: 067306

    Article  Google Scholar 

  59. Fitzgerald E A, Bulsara M T, Bai Y, et al. Monolithic III-V/Si integration. ECS Trans, 2009, 19: 345–350

    Article  Google Scholar 

  60. Lin J J, You T G, Wang M, et al. Efficient ion-slicing of InP thin film for Si-based hetero-integration. Nanotechnology, 2018, 29: 504002

    Article  Google Scholar 

  61. Shi H N, Huang K, Mu F W, et al. Realization of wafer-scale single-crystalline GaN film on CMOS-compatible Si(100) substrate by ion-cutting technique. Semicond Sci Technol, 2020, 35: 125004

    Article  Google Scholar 

  62. Xu W H, Wang Y B, You T G, et al. First demonstration of waferscale heterogeneous integration of Ga2O3 MOSFETs on SiC and Si substrates by ion-cutting process. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2019

  63. Yan Y Q, Huang K, Zhou H Y, et al. Wafer-scale fabrication of 42 rotated Y-cut LiTaO3-on-insulator (LTOI) substrate for a SAW resonator. ACS Appl Electron Mater, 2019, 1: 1660–1666

    Article  Google Scholar 

  64. Al-Sarawi S F, Abbott D, Franzon P D. A review of 3-D packaging technology. IEEE Trans Comp Packag Manufact Technol B, 1998, 21: 2–14

    Article  Google Scholar 

  65. Tummala R R. Packaging: past, present and future. In: Proceedings of the 6th International Conference on Electronic Packaging Technology, 2005

  66. Ulrich R K. Advanced Electronic Packaging. 2nd ed. Hoboken: John Wiley & Sons, 2006

    Book  Google Scholar 

  67. Gambino J P, Adderly S A, Knickerbocker J U. An overview of through-silicon-via technology and manufacturing challenges. MicroElectron Eng, 2015, 135: 73–106

    Article  Google Scholar 

  68. Li T, Hou J, Yan J L, et al. Chiplet heterogeneous integration technology-status and challenges. Electronics, 2020, 9: 670

    Article  Google Scholar 

  69. Prezioso M, Merrikh-Bayat F, Hoskins B D, et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature, 2015, 521: 61–64

    Article  Google Scholar 

  70. Chen W H, Li K X, Lin W Y, et al. A 65 nm 1 Mb nonvolatile computing-in-memory ReRAM macro with sub-16 ns multiply-and-accumulate for binary DNN AI edge processors. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2018. 494–496

  71. Liu Q, Gao B, Yao P, et al. A fully integrated analog ReRAM based 78.4TOPS/W compute-in-memory chip with fully parallel MAC computing. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2020. 500–502

  72. Yao P, Wu H Q, Gao B, et al. Fully hardware-implemented memristor convolutional neural network. Nature, 2020, 577: 641–646

    Article  Google Scholar 

  73. Jiang Z W, Yin S H, Seo J S, et al. XNOR-SRAM in-bitcell computing SRAM macro based on resistive computing mechanism. In: Proceedings of the on Great Lakes Symposium on VLSI, 2019. 417–422

  74. Valavi H, Ramadge P J, Nestler E, et al. A 64-tile 2.4-Mb in-memory-computing CNN accelerator employing charge-domain compute. IEEE J Solid-State Circ, 2019, 54: 1789–1799

    Article  Google Scholar 

  75. Chih Y D, Lee P H, Fujiwara H, et al. An 89TOPS/W and 16.3TOPS/mm2 all-digital SRAM-based full-precision compute-in memory macro in 22 nm for machine-learning edge applications. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2021. 252–254

  76. Seshadri V, Lee D, Mullins T, et al. Ambit: in-memory accelerator for bulk bitwise operations using commodity DRAM technology. In: Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, 2017. 273–287

  77. Li S C, Niu D M, Malladi K, et al. DRISA: a DRAM-based reconfigurable in-situ accelerator. In: Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, 2017. 288–301

  78. Tulevski G S, Franklin A D, Frank D, et al. Toward high-performance digital logic technology with carbon nanotubes. ACS Nano, 2014, 8: 8730–8745

    Article  Google Scholar 

  79. Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56–58

    Article  Google Scholar 

  80. Dürkop T, Getty S A, Cobas E, et al. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett, 2004, 4: 35–39

    Article  Google Scholar 

  81. Tans S J, Verschueren A R M, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature, 1998, 393: 49–52

    Article  Google Scholar 

  82. Martel R, Schmidt T, Shea H R, et al. Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett, 1998, 73: 2447–2449

    Article  Google Scholar 

  83. Javey A, Guo J, Wang Q, et al. Ballistic carbon nanotube field-effect transistors. Nature, 2003, 424: 654–657

    Article  Google Scholar 

  84. Chen Z H, Appenzeller J, Lin Y M, et al. An integrated logic circuit assembled on a single carbon nanotube. Science, 2006, 311: 1735–1735

    Article  Google Scholar 

  85. Zhang Z Y, Liang X L, Wang S H, et al. Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Lett, 2007, 7: 3603–3607

    Article  Google Scholar 

  86. Zhang Z Y, Wang S, Wang Z X, et al. Almost perfectly symmetric SWCNT-based CMOS devices and scaling. ACS Nano, 2009, 3: 3781–3787

    Article  Google Scholar 

  87. Qiu C G, Zhang Z Y, Xiao M M, et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science, 2017, 355: 271–276

    Article  Google Scholar 

  88. Qiu C G, Liu F, Xu L, et al. Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. Science, 2018, 361: 387–392

    Article  Google Scholar 

  89. Franklin A D. Electronics: the road to carbon nanotube transistors. Nature, 2013, 498: 443–444

    Article  Google Scholar 

  90. Shulaker M M, Hills G, Patil N, et al. Carbon nanotube computer. Nature, 2013, 501: 526–530

    Article  Google Scholar 

  91. Liu L J, Han J, Xu L, et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science, 2020, 368: 850–856

    Article  Google Scholar 

  92. Bishop M D, Hills G, Srimani T, et al. Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities. Nat Electron, 2020, 3: 492–501

    Article  Google Scholar 

  93. Johnson E O. Physical limitation on frequency and power parameters of transistors. In: Proceedings of IRE International Convention Record, 1991. 295–302

  94. Mishra U K, Parikh P, Wu Y F. AlGaN/GaN HEMTs-an overview of device operation and applications. Proc IEEE, 2002, 90: 1022–1031

    Article  Google Scholar 

  95. Shen L M, Heikman S, Moran B, et al. AlGaN/AlN/GaN high-power microwave HEMT. IEEE Electron Device Lett, 2001, 22: 457–459

    Article  Google Scholar 

  96. Sarazin N, Jardel O, Morvan E, et al. X-band power characterisation of AlInN/AlN/GaN HEMT grown on SiC substrate. Electron Lett, 2007, 43: 1317–1318

    Article  Google Scholar 

  97. Chu R M, Shen L, Fichtenbaum N, et al. V-gate GaN HEMTs for X-band power applications. IEEE Electron Device Lett, 2008, 29: 974–976

    Article  Google Scholar 

  98. Sun H F, Alt A R, Benedickter H, et al. 102-GHz AlInN/GaN HEMTs on silicon with 2.5-W/mm output power at 10 GHz. IEEE Electron Device Lett, 2009, 30: 796–798

    Article  Google Scholar 

  99. Chang C H, Hsu H T, Huang L C, et al. Fabrication of AlGaN/GaN high electron mobility transistors (HEMTs) on silicon substrate with slant field plates using deep-UV lithography featuring 5W/mm power density at X-band. In: Proceedings of Asia Pacific Microwave Conference, 2012. 941–943

  100. Wu Y F, Saxler A, Moore M, et al. 30-W/mm GaN HEMTs by field plate optimization. IEEE Electron Device Lett, 2004, 25: 117–119

    Article  Google Scholar 

  101. Tilak V, Green B, Kaper V, et al. Influence of barrier thickness on the high-power performance of AlGaN/GaN HEMTs. IEEE Electron Device Lett, 2001, 22: 504–506

    Article  Google Scholar 

  102. Shen L, Coffie R, Buttari D, et al. High-power polarization-engineered GaN/AlGaN/GaN HEMTs without surface passivation. IEEE Electron Device Lett, 2004, 25: 7–9

    Article  Google Scholar 

  103. Ikeda N, Niiyama Y, Kambayashi H, et al. GaN power transistors on Si substrates for switching applications. Proc IEEE, 2010, 98: 1151–1161

    Article  Google Scholar 

  104. Robert R S, Stewart E J, Freitag R, et al. The super-lattice castellated field effect transistor (SLCFET): a novel high performance transistor topology ideal for RF switching. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2014

  105. Medjdoub F, Herbecq N, Linge A, et al. High frequency high breakdown voltage GaN transistors. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2015

  106. Makiyama K, Ozaki S, Ohki T, et al. Collapse-free high power InAlGaN/GaN-HEMT with 3 W/mm at 96 GHz. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2015

  107. Romanczyk B, Guidry M, Wienecke S, et al. W-Band N-Polar GaN MISHEMTs with high power and record 27.8 efficiency at 94 GHz. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2016

  108. Then H W, Dasgupta S, Radosavljevic M, et al. 3D heterogeneous integration of high performance high-K metal gate GaN NMOS and Si PMOS transistors on 300 mm high-resistivity Si substrate for energy-efficient and compact power delivery, RF (5G and beyond) and SoC applications. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2019

  109. Han W T, Radosavljevic M, Jun K, et al. Advances in research on 300 mm Gallium Nitride-on-Si(111) NMOS transistor and silicon CMOS integration. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2020

  110. Dang K, Zhang J C, Zhou H, et al. Lateral GaN Schottky barrier diode for wireless high-power transfer application with high RF/DC conversion efficiency: from circuit construction and device technologies to system demonstration. IEEE Trans Ind Electron, 2020, 67: 6597–6606

    Article  Google Scholar 

  111. Dang K, Zhang J C, Zhou H, et al. A 5.8-GHz high-power and high-efficiency rectifier circuit with lateral GaN Schottky diode for wireless power transfer. IEEE Trans Power Electron, 2020, 35: 2247–2252

    Article  Google Scholar 

  112. Zhang T, Zhang J C, Zhou H, et al. A 1.9-kV/2.61-mΩ cm2 lateral GaN Schottky barrier diode on silicon substrate with tungsten anode and low turn-on voltage of 0.35 V. IEEE Electron Device Lett, 2018, 39: 1548–1551

    Google Scholar 

  113. Zhang T, Zhang J C, Zhou H, et al. High-performance lateral GaN Schottky barrier diode on silicon substrate with low turn-on voltage of 0.31 V, high breakdown voltage of 2.65 kV and high-power figure-of-merit of 2.65 GW cm−2. Appl Phys Express, 2019, 12: 046502

    Article  Google Scholar 

  114. Zhang T, Zhang J C, Xu S, et al. A > 3 kV/2.94 mΩ cm2 and low leakage current with low turn-on voltage lateral GaN Schottky barrier diode on silicon substrate with anode engineering technique. IEEE Electron Device Lett, 2019, 40: 1583–1586

    Article  Google Scholar 

  115. Zhang T, Zhang J C, Zhang W H, et al. Investigation of an AlGaN-channel Schottky barrier diode on a silicon substrate with a molybdenum anode. Semicond Sci Technol, 2021, 36: 044003

    Article  Google Scholar 

  116. Fu H, Baranowski I, Huang X, et al. Demonstration of AlN Schottky barrier diodes with blocking voltage over 1 kV. IEEE Electron Device Lett, 2017, 38: 1286–1289

    Article  Google Scholar 

  117. Borisov B, Kuryatkov V, Kudryavtsev Y, et al. Si-doped AlxGa1−xN (0.56 ⩽ x ⩽ 1) layers grown by molecular beam epitaxy with ammonia. Appl Phys Lett, 2005, 87: 132106

    Article  Google Scholar 

  118. Zhang Y N, Zhang J C, Liu Z H, et al. Demonstration of a 2 kV Al0.85Ga0.15N Schottky barrier diode with improved on-current and ideality factor. IEEE Electron Device Lett, 2020, 41: 457–460

    Article  Google Scholar 

  119. Yang C H, Leon R C C, Hwang J C C, et al. Operation of a silicon quantum processor unit cell above one kelvin. Nature, 2020, 580: 350–354

    Article  Google Scholar 

  120. Petit L, Eenink H G J, Russ M, et al. Universal quantum logic in hot silicon qubits. Nature, 2020, 580: 355–359

    Article  Google Scholar 

  121. Yoneda J, Takeda K, Otsuka T, et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nature Nanotech, 2018, 13: 102–106

    Article  Google Scholar 

  122. Huang W, Yang C H, Chan K W, et al. Fidelity benchmarks for two-qubit gates in silicon. Nature, 2019, 569: 532–536

    Article  Google Scholar 

  123. Takeda K, Noiri A, Nakajima T. Quantum tomography of an entangled three-spin state in silicon. 2020. ArXiv:2010.10316

  124. Yoneda J, Takeda K, Noiri A, et al. Quantum non-demolition readout of an electron spin in silicon. Nat Commun, 2020, 11: 1144

    Article  Google Scholar 

  125. Pillarisetty R, George H C, Watson T F, et al. High volume electrical characterization of semiconductor qubits. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2019. 7–11

  126. Franceschi S D, Hutin L, Maurand R, et al. SOI technology for quantum information processing. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2016. 3–7

  127. Guevel L L, Billiot G, Jehl X, et al. A 110 mK 295 µW 28 nm FDSOI CMOS quantum integrated circuit with a 2.8 GHz excitation and nA current sensing of an on-chip double quantum dot. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2020. 306–308

  128. Gupta S, Navaraj W T, Lorenzelli L, et al. Ultra-thin chips for high-performance flexible electronics. NPJ Flexible Electron, 2018, 2: 1–17

    Article  Google Scholar 

  129. Huang S Y, Liu Y, Zhao Y, et al. Flexible electronics: stretchable electrodes and their future. Adv Funct Mater, 2019, 29: 1805924

    Article  Google Scholar 

  130. Son D, Kang J, Vardoulis O, et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat Nanotech, 2018, 13: 1057–1065

    Article  Google Scholar 

  131. Song E, Li J, Won S M, et al. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat Mater, 2020, 19: 590–603

    Article  Google Scholar 

  132. Matsuhisa N, Inoue D, Zalar P, et al. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat Mater, 2017, 16: 834–840

    Article  Google Scholar 

  133. Wang N N, Cheng L, Ge R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat Photon, 2016, 10: 699–704

    Article  Google Scholar 

  134. Cao Y, Wang N N, Tian H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562: 249–253

    Article  Google Scholar 

  135. Gu L, Shi H F, Bian L F, et al. Colour-tunable ultra-long organic phosphorescence of a single-component molecular crystal. Nat Photonics, 2019, 13: 406–411

    Article  Google Scholar 

  136. Ren H, Yu S D, Chao L F, et al. Efficient and stable Ruddlesden-Popper perovskite solar cell with tailored interlayer molecular interaction. Nat Photonics, 2020, 14: 154–163

    Article  Google Scholar 

  137. Liang C, Gu H, Xia Y, et al. Two-dimensional Ruddlesden-Popper layered perovskite solar cells based on phase-pure thin-films. Nat Energy, 2020, 6: 38–45

    Article  Google Scholar 

  138. Bogaerts W, Pérez D, Capmany J, et al. Programmable photonic circuits. Nature, 2020, 586: 207–216

    Article  Google Scholar 

  139. Smit M, Williams K, van der Tol J. Past, present, and future of InP-based photonic integration. APL Photonics, 2019, 4: 050901

    Article  Google Scholar 

  140. Hoefler G E, Zhou Y, Anagnosti M, et al. Foundry development of system-on-chip InP-based photonic integrated circuits. IEEE J Sel Top Quantum Electron, 2019, 25: 1–17

    Article  Google Scholar 

  141. Billah M R, Blaicher M, Hoose T, et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica, 2018, 5: 876–883

    Article  Google Scholar 

  142. You J, Luo Y K, Yang J, et al. Hybrid/integrated silicon photonics based on 2D materials in optical communication nanosystems. Laser Photonics Rev, 2020, 14: 2000239

    Article  Google Scholar 

  143. Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562: 101–104

    Article  Google Scholar 

  144. Wang C, Zhang M, Yu M J, et al. Monolithic lithium niobate photonic circuits for Kerr frequency COMB generation and modulation. Nat Commun, 2019, 10: 978

    Article  Google Scholar 

  145. Li M X, Ling J W, He Y, et al. Lithium niobate photonic-crystal electro-optic modulator. Nat Commun, 2020, 11: 4123

    Article  Google Scholar 

  146. Lin H T, Song Y, Huang Y Z, et al. Chalcogenide glass-on-graphene photonics. Nat Photon, 2017, 11: 798–805

    Article  Google Scholar 

  147. Shen W H, Zeng P Y, Yang Z L, et al. Chalcogenide glass photonic integration for improved 2 µm optical interconnection. Photon Res, 2020, 8: 1484–1490

    Article  Google Scholar 

  148. Romagnoli M, Sorianello V, Midrio M, et al. Graphene-based integrated photonics for next-generation datacom and telecom. Nat Rev Mater, 2018, 3: 392–414

    Article  Google Scholar 

  149. Guo X H, He A, Su Y K. Recent advances of heterogeneously integrated III-V laser on Si. J Semicond, 2019, 40: 101304

    Article  Google Scholar 

  150. He A, Guo X, Wang H W, et al. Ultra-compact coupling structures for heterogeneously integrated silicon lasers. J Lightw Technol, 2020, 38: 3974–3982

    Google Scholar 

  151. He M B, Xu M Y, Ren Y X, et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond. Nat Photonics, 2019, 13: 359–364

    Article  Google Scholar 

  152. Gao A Y, Lai J W, Wang Y J, et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat Nanotechnol, 2019, 14: 217–222

    Article  Google Scholar 

  153. Zhou Z P, Tu Z J, Yin B, et al. Development trends in silicon photonics. Chin Opt Lett, 2013, 11: 012501

    Article  Google Scholar 

  154. Zhou Z P, Yin B, Michel J. On-chip light sources for silicon photonics. Light Sci Appl, 2015, 4: 358

    Article  Google Scholar 

  155. Chen X, Milosevic M M, Stankovic S, et al. The emergence of silicon photonics as a flexible technology platform. Proc IEEE, 2018, 106: 2101–2116

    Article  Google Scholar 

  156. Su Y K, Zhang Y, Qiu C, et al. Silicon photonic platform for passive waveguide devices: materials, fabrication, and applications. Adv Mater Technol, 2020, 5: 1901153

    Article  Google Scholar 

  157. Driscoll J B, Doussiere P, Islam S, et al. First 400G 8-channel CWDM silicon photonic integrated transmitter. In: Proceedings of the 15th International Conference on Group IV Photonics (GFP), 2018

  158. Fathololoumi S, Nguyen K, Mahalingam H, et al. 1.6 Tbps silicon photonics integrated circuit for co-packaged optical-IO switch applications. In: Proceedings of Optical Fiber Communication Conference, 2020

  159. Qiang X G, Zhou X Q, Wang J W, et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat Photon, 2018, 12: 534–539

    Article  Google Scholar 

  160. Shen Y C, Harris N C, Skirlo S, et al. Deep learning with coherent nanophotonic circuits. Nat Photonics, 2017, 11: 189–190

    Article  Google Scholar 

  161. Poulton C V, Yaacobi A, Cole D B, et al. Coherent solid-state LIDAR with silicon photonic optical phased arrays. Opt Lett, 2017, 42: 4091–4094

    Article  Google Scholar 

  162. Wade M, Anderson E, Ardalan S, et al. TeraPHY: a chiplet technology for low-power, high-bandwidth in-package optical I/O. IEEE Micro, 2020, 40: 63–71

    Article  Google Scholar 

  163. Capmany J, Novak D. Microwave photonics combines two worlds. Nat Photon, 2007, 1: 319–330

    Article  Google Scholar 

  164. Yao J. Microwave photonics. J Lightw Technol, 2009, 27: 314–335

    Article  Google Scholar 

  165. Marpaung D, Yao J, Capmany J. Integrated microwave photonics. Nat Photon, 2019, 13: 80–90

    Article  Google Scholar 

  166. Shen B Q, Chang L, Liu J Q, et al. Integrated turnkey soliton microcombs. Nature, 2020, 582: 365–369

    Article  Google Scholar 

  167. Liu W, Li M, Guzzon R S, et al. A fully reconfigurable photonic integrated signal processor. Nat Photon, 2016, 10: 190–195

    Article  Google Scholar 

  168. Grootjans R, Roeloffzen C, Taddei C, et al. Broadband continuously tuneable delay microwave photonic beamformer for phased array antennas. In: Proceedings of the 49th European Microwave Conference (EuMC), 2019. 812–815

  169. Hao T F, Tang J, Domenech D, et al. Toward monolithic integration of OEOs: from systems to chips. J Lightw Technol, 2018, 36: 4565–4582

    Article  Google Scholar 

  170. Li S M, Cui Z Z, Ye X W, et al. Chip-based microwave-photonic radar for high-resolution imaging. Laser Photonics Rev, 2020, 14: 1900239

    Article  Google Scholar 

  171. Zou X H, Bai W L, Chen W, et al. Microwave photonics for featured applications in high-speed railways: communications, detection, and sensing. J Lightw Technol, 2018, 36: 4337–4346

    Article  Google Scholar 

  172. Zou X H, Zou F, Cao Z Z, et al. A multifunctional photonic integrated circuit for diverse microwave signal generation, transmission, and processing. Laser Photonics Rev, 2019, 13: 1800240

    Article  Google Scholar 

  173. Roy K, Jaiswal A, Panda P. Towards spike-based machine intelligence with neuromorphic computing. Nature, 2019, 575: 607–617

    Article  Google Scholar 

  174. Prucnal P R, Shastri B J, de Lima T F, et al. Recent progress in semiconductor excitable lasers for photonic spike processing. Adv Opt Photon, 2016, 8: 228–299

    Article  Google Scholar 

  175. Shastri B J, Tait A N, Lima T D, et al. Principles of neuromorphic photonics. 2018. ArXiv:1801.00016

  176. Peng H T, Nahmias M A, de Lima T F, et al. Neuromorphic photonic integrated circuits. IEEE J Sel Top Quantum Electron, 2018, 24: 1–15

    Article  Google Scholar 

  177. Robertson J, Wade E, Kopp Y, et al. Toward neuromorphic photonic networks of ultrafast spiking laser neurons. IEEE J Sel Top Quantum Electron, 2020, 26: 1–15

    Article  Google Scholar 

  178. Xiang S Y, Han Y N, Song Z W, et al. A review: photonics devices, architectures, and algorithms for optical neural computing. J Semicond, 2021, 42: 023105

    Article  Google Scholar 

  179. Xiang S Y, Wen A J, Pan W. Emulation of spiking response and spiking frequency property in VCSEL-based photonic neuron. IEEE Photonics J, 2016, 8: 1–9

    Article  Google Scholar 

  180. Xiang S Y, Zhang Y H, Guo X X, et al. Photonic generation of neuron-like dynamics using VCSELs subject to double polarized optical injection. J Lightw Technol, 2018, 36: 4227–4234

    Article  Google Scholar 

  181. Xiang J L, Torchy A, Guo X, et al. All-optical spiking neuron based on passive microresonator. J Lightw Technol, 2020, 38: 4019–4029

    Article  Google Scholar 

  182. Ren Q S, Zhang Y L, Wang R, et al. Optical spike-timing-dependent plasticity with weight-dependent learning window and reward modulation. Opt Express, 2015, 23: 25247

    Article  Google Scholar 

  183. Xiang S Y, Han Y N, Guo X X, et al. Real-time optical spike-timing dependent plasticity in a single VCSEL with dual-polarized pulsed optical injection. Sci China Inf Sci, 2020, 63: 160405

    Article  Google Scholar 

  184. Zhou H L, Zhao Y H, Xu G X, et al. Chip-scale optical matrix computation for pagerank algorithm. IEEE J Sel Top Quantum Electron, 2020, 26: 1–10

    Google Scholar 

  185. Zhou H L, Zhao Y H, Wei Y X, et al. All-in-one silicon photonic polarization processor. Nanophotonics, 2019, 8: 2257–2267

    Article  Google Scholar 

  186. Ríos C, Youngblood N, Cheng Z, et al. In-memory computing on a photonic platform. Sci Adv, 2019, 5: 5759

    Article  Google Scholar 

  187. Xu S F, Wang J, Wang R, et al. High-accuracy optical convolution unit architecture for convolutional neural networks by cascaded acousto-optical modulator arrays. Opt Express, 2019, 27: 19778

    Article  Google Scholar 

  188. Xu S F, Wang J, Zou W W. Optical patching scheme for optical convolutional neural networks based on wavelength-division multiplexing and optical delay lines. Opt Lett, 2020, 45: 3689–3692

    Article  Google Scholar 

  189. Vandoorne K, Mechet P, van Vaerenbergh T, et al. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat Commun, 2014, 5: 3541

    Article  Google Scholar 

  190. Guo X X, Xiang S Y, Zhang Y H, et al. Polarization multiplexing reservoir computing based on a VCSEL with polarized optical feedback. IEEE J Sel Top Quantum Electron, 2020, 26: 1–9

    Google Scholar 

  191. Xiang S Y, Zhang Y H, Gong J K, et al. STDP-based unsupervised spike pattern learning in a photonic spiking neural network with VCSELs and VCSOAs. IEEE J Sel Top Quantum Electron, 2019, 25: 1–9

    Article  Google Scholar 

  192. Xiang S Y, Ren Z X, Song Z W, et al. Computing primitive of fully VCSEL-based all-optical spiking neural network for supervised learning and pattern classification. IEEE Trans Neural Netw Learn Syst, 2020. doi: https://doi.org/10.1109/TNNLS.2020.3006263

  193. Tait A N, de Lima T F, Zhou E, et al. Neuromorphic photonic networks using silicon photonic weight banks. Sci Rep, 2017, 7: 1–10

    Article  Google Scholar 

  194. Lin X, Rivenson Y, Yardimci N T, et al. All-optical machine learning using diffractive deep neural networks. Science, 2018, 361: 1004–1008

    Article  MathSciNet  MATH  Google Scholar 

  195. Feldmann J, Youngblood N, Wright C D, et al. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 2019, 569: 208–214

    Article  Google Scholar 

  196. Wetzstein G, Ozcan A, Gigan S, et al. Inference in artificial intelligence with deep optics and photonics. Nature, 2020, 588: 39–47

    Article  Google Scholar 

  197. Feldmann J, Youngblood N, Karpov M, et al. Parallel convolutional processing using an integrated photonic tensor core. Nature, 2021, 589: 52–58

    Article  Google Scholar 

  198. Xu X, Tan M X, Corcoran B, et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 2021, 589: 44–51

    Article  Google Scholar 

  199. Wu H Q, Dai Q H. Artificial intelligence accelerated by light. Nature, 2021, 589: 25–26

    Article  Google Scholar 

  200. Morkoc H, Mohammad S N. High-luminosity blue and blue-green gallium nitride light-emitting diodes. Science, 1995, 267: 51–55

    Article  Google Scholar 

  201. Khan A, Balakrishnan K, Katona T. Ultraviolet light-emitting diodes based on group three nitrides. Nat Photon, 2008, 2: 77–84

    Article  Google Scholar 

  202. Jia Y Q, Ning J, Zhang J C, et al. Transferable GaN enabled by selective nucleation of AlN on graphene for high-brightness violet light-emitting diodes. Adv Opt Mater, 2020, 8: 1901632

    Article  Google Scholar 

  203. Peng R S, Meng X J, Xu S R, et al. Study on dislocation annihilation mechanism of the high-quality GaN grown on sputtered AlN/PSS and its application in green light-emitting diodes. IEEE Trans Electron Device, 2019, 66: 2243–2248

    Article  Google Scholar 

  204. Liu L, Yang C, Patané A, et al. High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN. Nanoscale, 2017, 9: 8142–8148

    Article  Google Scholar 

  205. Li J, Xi X, Li X D, et al. Ultra-high and fast ultraviolet response photodetectors based on lateral porous GaN/Ag nanowires composite nanostructure. Adv Opt Mater, 2020, 8: 1902162

    Article  Google Scholar 

  206. Li J, Xi X, Lin S, et al. Ultrahigh sensitivity graphene/nanoporous GaN ultraviolet photodetectors. ACS Appl Mater Interfa, 2020, 12: 11965–11971

    Article  Google Scholar 

  207. Noda S, Fujita M. Light-emitting diodes: photonic crystal efficiency boost. Nat Photon, 2009, 3: 129–130

    Article  Google Scholar 

  208. Zhang C, Park S H, Chen D, et al. Mesoporous GaN for photonic engineering-highly reflective GaN mirrors as an example. ACS Photonics, 2015, 2: 980–986

    Article  Google Scholar 

  209. Lee S M, Gong S H, Kang J H, et al. Optically pumped GaN vertical cavity surface emitting laser with high index-contrast nanoporous distributed Bragg reflector. Opt Express, 2015, 23: 11023–11030

    Article  Google Scholar 

  210. Gao X M, Shi Z, Jiang Y, et al. Monolithic III-nitride photonic integration toward multifunctional devices. Opt Lett, 2017, 42: 4853–4856

    Article  Google Scholar 

  211. Li K H, Fu W Y, Cheung Y F, et al. Monolithically integrated InGaN/GaN light-emitting diodes, photodetectors, and waveguides on Si substrate. Optica, 2018, 5: 564–569

    Article  Google Scholar 

  212. Liu Z J, Huang T D, Ma J, et al. Monolithic integration of AlGaN/GaN HEMT on LED by MOCVD. IEEE Electron Device Lett, 2014, 35: 330–332

    Article  Google Scholar 

  213. Liu C, Cai Y F, Zou X B, et al. Low-leakage high-breakdown laterally integrated HEMT-LED via n-GaN electrode. IEEE Photon Tech Lett, 2016, 28: 1130–1133

    Article  Google Scholar 

  214. Lu X, Liu C, Jiang H X, et al. Monolithic integration of enhancement-mode vertical driving transistorson a standard InGaN/GaN light emitting diode structure. Appl Phys Lett, 2016, 109: 053504

    Article  Google Scholar 

  215. Cai Y F, Gong Y P, Bai J, et al. Controllable uniform green light emitters enabled by circular HEMT-LED devices. IEEE Photon J, 2018, 10: 1–7

    Google Scholar 

  216. Tsuchiyama K, Yamane K, Utsunomiya S, et al. Monolithic integration of Si-MOSFET and GaN-LED using Si/SiO2/GaN-LED wafer. Appl Phys Express, 2016, 9: 104101

    Article  Google Scholar 

  217. Gao X M, Yuan J L, Yang Y C, et al. A 30 Mbps in-plane full-duplex light communication using a monolithic GaN photonic circuit. Semicond Sci Technol, 2017, 32: 075002

    Article  Google Scholar 

  218. Li K H, Cheung Y F, Fu W Y, et al. Monolithic integration of GaN-on-sapphire light-emitting diodes, photodetectors, and waveguides. IEEE J Sel Top Quantum Electron, 2018, 24: 1–6

    Google Scholar 

  219. Chun H, Rajbhandari S, Faulkner G, et al. LED based wavelength division multiplexed 10 Gb/s visible light communications. J Lightw Technol, 2016, 34: 3047–3052

    Article  Google Scholar 

  220. Rajbhandari S, McKendry J J D, Herrnsdorf J, et al. A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications. Semicond Sci Technol, 2017, 32: 023001

    Article  Google Scholar 

  221. Zhao L X, Zhu S C, Wu C H, et al. GaN-based LEDs for light communication. Sci China-Phys Mech Astron, 2016, 59: 107301

    Article  Google Scholar 

  222. Zhu S C, Lin S, Li J, et al. Influence of quantum confined Stark effect and carrier localization effect on modulation bandwidth for GaN-based LEDs. Appl Phys Lett, 2017, 111: 171105

    Article  Google Scholar 

  223. Rashidi A, Monavarian M, Aragon A, et al. Nonpolar m-plane InGaN/GaN micro-scale light-emitting diode with 1.5 GHz modulation bandwidth. IEEE Electron Device Lett, 2018, 39: 520–523

    Article  Google Scholar 

  224. Cao H C, Lin S, Ma Z H, et al. Color converted white light-emitting diodes with 637.6 MHz modulation bandwidth. IEEE Electron Device Lett, 2019, 40: 267–270

    Article  Google Scholar 

  225. Vahala K J. Optical microcavities. Nature, 2003, 424: 839–846

    Article  Google Scholar 

  226. Feng M X, Wang J, Zhou R, et al. On-chip integration of GaN-based laser, modulator, and photodetector grown on Si. IEEE J Sel Top Quantum Electron, 2018, 24: 1–5

    Google Scholar 

  227. Tamboli A C, Haberer E D, Sharma R, et al. Room-temperature continuous-wave lasing in GaN/InGaN microdisks. Nat Photon, 2007, 1: 61–64

    Article  Google Scholar 

  228. Simeonov D, Feltin E, Bühlmann H J, et al. Blue lasing at room temperature in high quality factor GaN/AlInN microdisks with InGaN quantum wells. Appl Phys Lett, 2007, 90: 061106

    Article  Google Scholar 

  229. Tabataba-Vakili F, Doyennette L, Brimont C, et al. Blue microlasers integrated on a photonic platform on silicon. ACS Photonics, 2018, 5: 3643–3648

    Article  Google Scholar 

  230. Tabataba-Vakili F, Rennesson S, Damilano B, et al. III-nitride on silicon electrically injected microrings for nanophotonic circuits. Opt Express, 2019, 27: 11800–11808

    Article  Google Scholar 

  231. Yang C, Liu L, Zhu S C, et al. GaN with laterally aligned nanopores to enhance the water splitting. J Phys Chem C, 2017, 121: 7331–7336

    Article  Google Scholar 

  232. Li J, Yang C, Liu L, et al. High responsivity and wavelength selectivity of GaN-based resonant cavity photodiodes. Adv Opt Mater, 2020, 8: 1901276

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Outstanding Youth Science Fund Project of National Natural Science Foundation of China (Grant No. 62022062), National Natural Science Foundation of China (Grant Nos. 61974177, 61674119), Fundamental Research Funds for the Central Universities (Grant No. JB210114). The authors would like to thank the experts and researchers who provided the materials for this review.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue Hao or Shuiying Xiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Y., Xiang, S., Han, G. et al. Recent progress of integrated circuits and optoelectronic chips. Sci. China Inf. Sci. 64, 201401 (2021). https://doi.org/10.1007/s11432-021-3235-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-021-3235-7

Keywords

Navigation