Skip to main content
Log in

Multichannel adaptive signal detection: basic theory and literature review

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Multichannel adaptive signal detection uses test and training data jointly to form an adaptive detector to determine whether a target exists. The resulting adaptive detectors typically possess constant false alarm rate (CFAR) properties; thus, no additional CFAR processing is required. In addition, a filtering process is also not required because the filtering function is embedded in the adaptive detector. Adaptive detection typically exhibits better detection performance than the filtering-then-CFAR detection technique. It has been approximately 35 years since the first multichannel adaptive detector was proposed by Kelly in 1986. However, there are few overview articles on this topic. Thus, in this study, we present a tutorial overview of multichannel adaptive signal detection with an emphasis on the Gaussian background. We discuss the main design criteria for adaptive detectors, investigate the relationship between adaptive detection and filtering-then-CFAR detection techniques, investigate the relationship between adaptive detectors and adaptive filters, summarize typical adaptive detectors, present numerical examples, provide a comprehensive literature review, and discuss potential future research tracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gini F, Greco M V. Suboptimum approach to adaptive coherent radar detection in compound-Gaussian clutter. IEEE Trans Aerosp Electron Syst, 1999, 35: 1095–1104

    Article  Google Scholar 

  2. Chong C Y, Pascal F, Ovarlez J P, et al. MIMO radar detection in non-Gaussian and heterogeneous clutter. IEEE J Sel Top Signal Process, 2010, 4: 115–126

    Article  Google Scholar 

  3. Palam R, Greco M, Gini F. Multistatic adaptive CFAR detection in non-Gaussian clutter. EURASIP Journal on Advances in Signal Processing. 2016, 2016: 107

    Article  Google Scholar 

  4. Kelly E J. An adaptive detection algorithm. IEEE Trans Aerosp Electron Syst, 1986, 22: 115–127

    Article  Google Scholar 

  5. de Maio A, Greco M S. Modern Radar Detection Theory. Raleigh: SciTech Publishing, 2016

    Google Scholar 

  6. Gini F, Farina A. Vector subspace detection in compound-Gaussian clutter. Part I: survey and new results. IEEE Trans Aerosp Electron Syst, 2002, 38: 1295–1311

    Article  Google Scholar 

  7. Sangston K J, Farina A. Coherent radar detection in compound-Gaussian clutter: Clairvoyant detectors. IEEE Aerosp Electron Syst Mag, 2016, 31: 42–63

    Article  Google Scholar 

  8. Lemonte A J. The Gradient Test: Another Likelihood-Based Test. Cambridge: Cambridge University Press, 2016

    MATH  Google Scholar 

  9. Durbin J. Testing for serial correlation in least-squares regression when some of the regressors are lagged dependent variables. Econometrica, 1970, 38: 410–421

    Article  MathSciNet  Google Scholar 

  10. Scharf L L. Statistical Signal Processing: Detection, Estimation, and Times Series Analysis. New York: Addison-Wesley Publishing Company, 1991

    MATH  Google Scholar 

  11. Kay S M. The multifamily likelihood ratio test for multiple signal model detection. IEEE Signal Process Lett, 2005, 12: 369–371

    Article  Google Scholar 

  12. Abramovich Y I, Spencer N K, Gorokhov A Y. Modified GLRT and AMF framework for adaptive detectors. IEEE Trans Aerosp Electron Syst, 2007, 43: 1017–1051

    Article  Google Scholar 

  13. Carotenuto V, de Maio A, Clemente C, et al. Invariant rules for multipolarization SAR change detection. IEEE Trans Geosci Remote Sens, 2015, 53: 3294–3311

    Article  Google Scholar 

  14. Carotenuto V, de Maio A, Clemente C, et al. Unstructured versus structured GLRT for multipolarization SAR change detection. IEEE Geosci Remote Sens Lett, 2015, 12: 1665–1669

    Article  Google Scholar 

  15. Carotenuto V, de Maio A, Clemente C, et al. Forcing scale invariance in multipolarization SAR change detection. IEEE Trans Geosci Remote Sens, 2016, 54: 36–50

    Article  Google Scholar 

  16. Ciuonzo D, Carotenuto V, de Maio A. On multiple covariance equality testing with application to SAR change detection. IEEE Trans Signal Process, 2017, 65: 5078–5091

    Article  MathSciNet  MATH  Google Scholar 

  17. de Maio A, de Nicola S, Farina A. GLRT versus MFLRT for adaptive CFAR radar detection with conic uncertainty. IEEE Signal Process Lett, 2009, 16: 707–710

    Article  Google Scholar 

  18. de Maio A, Orlando D, Pallotta L, et al. A multifamily GLRT for oil spill detection. IEEE Trans Geosci Remote Sens, 2017, 55: 63–79

    Article  Google Scholar 

  19. de Maio A, Han S, Orlando D. Adaptive radar detectors based on the observed FIM. IEEE Trans Signal Process, 2018, 66: 3838–3847

    Article  MathSciNet  MATH  Google Scholar 

  20. Gerlach K, Steiner M J. Adaptive detection of range distributed targets. IEEE Trans Signal Process, 1999, 47: 1844–1851

    Article  Google Scholar 

  21. de Maio A. Polarimetric adaptive detection of range-distributed targets. IEEE Trans Signal Process, 2002, 50: 2152–2159

    Article  Google Scholar 

  22. de Maio A, Farina A, Gerlach K. Adaptive detection of range spread targets with orthogonal rejection. IEEE Trans Aerosp Electron Syst, 2007, 43: 738–752

    Article  Google Scholar 

  23. Aubry A, de Maio A, Orlando D, et al. Adaptive detection of point-like targets in the presence of homogeneous clutter and subspace interference. IEEE Signal Process Lett, 2014, 21: 848–852

    Article  Google Scholar 

  24. Aubry A, de Maio A, Foglia G, et al. Diffuse multipath exploitation for adaptive radar detection. IEEE Trans Signal Process, 2015, 63: 1268–1281

    Article  MathSciNet  MATH  Google Scholar 

  25. Rong Y, Aubry A, de Maio A, et al. Diffuse multipath exploitation for adaptive detection of range distributed targets. IEEE Trans Signal Process, 2020, 68: 1197–1212

    Article  MathSciNet  MATH  Google Scholar 

  26. Rao C R. Score test: historical review and recent developments. In: Proceedings of Advances in Ranking and Selection, Multiple Comparisons, and Reliability. Boston: Birkhäuser, 2005. 3–20

    Google Scholar 

  27. Kay S M. Fundamentals of Statistical Signal Processing: Detection Theory. Englewood Cliffs: Prentice-Hall, 1998

    Google Scholar 

  28. Pagadarai S, Wyglinski A, Anderson C. An evaluation of the Bayesian CRLB for time-varying MIMO channel estimation using complex-valued differentials. In: Proceedings of IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, 2011. 818–823

  29. Liu W, Wang Y, Xie W. Fisher information matrix, Rao test, and Wald test for complex-valued signals and their applications. Signal Process, 2014, 94: 1–5

    Article  Google Scholar 

  30. Kay S, Zhu Z. The complex parameter Rao test. IEEE Trans Signal Process, 2016, 64: 6580–6588

    Article  MathSciNet  MATH  Google Scholar 

  31. Hjørungnes A. Complex-Valued Matrix Derivatives: With Applications in Signal Processing and Communications. New York: Cambridge University Press, 2011

    Book  MATH  Google Scholar 

  32. Magnus J R, Neudecker H. Matrix Differential Calculus with Applications in Statistics and Econometrics. 3rd ed. New York: Wiley, 2007

    MATH  Google Scholar 

  33. Richards M A, Scheer J A, Holm W A. Principles of Modern Radar, Volume I — Basic Principles. Raleigh: SciTech Publishing, 2010

    Google Scholar 

  34. Weinberg G. Radar Detection Theory of Sliding Window Processes. Boca Raton: CRC Press, 2017

    Book  MATH  Google Scholar 

  35. Brennan L E, Reed L S. Theory of adaptive radar. IEEE Trans Aerosp Electron Syst, 1973, 9: 237–252

    Article  Google Scholar 

  36. Li J, Stoica P. Robust Adaptive Beamforming. Hoboken: Wiley, 2006

    Google Scholar 

  37. Wang Y, Peng Y. Space-Time Adaptive Processing. Beijing: Tsinghua University Press, 2000

    Google Scholar 

  38. Klemm R. Principles of Space-Time Adaptive Processing. 3rd ed. London: The Institution of Electrical Engineers, 2006

    Book  Google Scholar 

  39. Guerci J R. Space-Time Adaptive Processing for Radar. 2nd ed. Boston: Artech House, 2015

    Google Scholar 

  40. Ward J. Space-time Adaptive Processing for Airborne Radar. Technical Report. Lexington: MIT Lincoln Laboratory, 1994

    Google Scholar 

  41. Melvin W L. A STAP overview. IEEE Aerosp Electron Syst Mag, 2004, 19: 19–35

    Article  Google Scholar 

  42. Reed I S, Mallett J D, Brennan L E. Rapid convergence rate in adaptive arrays. IEEE Trans Aerosp Electron Syst, 1974, 10: 853–863

    Article  Google Scholar 

  43. Chen W S, Reed I S. A new CFAR detection test for radar. Digital Signal Process, 1991, 1: 198–214

    Article  Google Scholar 

  44. Robey F C, Fuhrmann D R, Kelly E J, et al. A CFAR adaptive matched filter detector. IEEE Trans Aerosp Electron Syst, 1992, 28: 208–216

    Article  Google Scholar 

  45. de Maio A. Rao test for adaptive detection in Gaussian interference with unknown covariance matrix. IEEE Trans Signal Process, 2007, 55: 3577–3584

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang H, Cai L. On adaptive multiband signal detection with the SMI algorithm. IEEE Trans Aerosp Electron Syst, 1990, 26: 768–773

    Article  Google Scholar 

  47. de Maio A. A new derivation of the adaptive matched filter. IEEE Signal Process Lett, 2004, 11: 792–793

    Article  Google Scholar 

  48. Gerlach K. A mean level adaptive detector using nonconcurrent data. IEEE Trans Aerosp Electron Syst, 1994, 30: 258–265

    Article  Google Scholar 

  49. Gerlach K. A comparison of two adaptive detection schemes. IEEE Trans Aerosp Electron Syst, 1994, 30: 30–40

    Article  Google Scholar 

  50. Gerlach K. Effects of signal contamination on two adaptive detectors. IEEE Trans Aerosp Electron Syst, 1995, 31: 297–309

    Article  Google Scholar 

  51. Gerlach K, Lin F C. Convergence performance of binary adaptive detectors. IEEE Trans Aerosp Electron Syst, 1995, 31: 329–340

    Article  Google Scholar 

  52. Reed I S, Gau Y L, Truong T K. CFAR detection and estimation for STAP radar. IEEE Trans Aerosp Electron Syst, 1998, 34: 722–735

    Article  Google Scholar 

  53. Wang Y-L, Bao Z, Peng Y-N. STAP with medium PRF mode for non-side-looking airborne radar. IEEE Trans Aerosp Electron Syst, 2000, 36: 609–620

    Article  Google Scholar 

  54. Conte E, de Maio A, Ricci G. GLRT-based adaptive detection algorithms for range-spread targets. IEEE Trans Signal Process, 2001, 49: 1336–1348

    Article  Google Scholar 

  55. Kraut S, Scharf L L, Butler R W. The adaptive coherence estimator: a uniformly most-powerful-invariant adaptive detection statistic. IEEE Trans Signal Process, 2005, 53: 427–438

    Article  MathSciNet  MATH  Google Scholar 

  56. Kraut S, Scharf L L. The CFAR adaptive subspace detector is a scale-invariant GLRT. IEEE Trans Signal Process, 1999, 47: 2538–2541

    Article  Google Scholar 

  57. de Maio A, Iommelli S. Coincidence of the Rao test, Wald test, and GLRT in partially homogeneous environment. IEEE Signal Process Lett, 2008, 15: 385–388

    Article  Google Scholar 

  58. Liu J, Li H, Himed B. Threshold setting for adaptive matched filter and adaptive coherence estimator. IEEE Signal Process Lett, 2015, 22: 11–15

    Article  Google Scholar 

  59. Conte E, de Maio A. An invariant framework for adaptive detection in partially homogeneous environment. WSEAS Trans Circ, 2003, 2: 282–287

    Google Scholar 

  60. de Maio A. Invariance theory for adaptive radar detection in heterogeneous environment. IEEE Signal Process Lett, 2019, 26: 996–1000

    Article  Google Scholar 

  61. Pascal F, Chitour Y, Ovarlez J P, et al. Covariance structure maximum-likelihood estimates in compound Gaussian noise: existence and algorithm analysis. IEEE Trans Signal Process, 2008, 56: 34–48

    Article  MathSciNet  MATH  Google Scholar 

  62. Conte E, Lops M, Ricci G. Asymptotically optimum radar detection in compound-Gaussian clutter. IEEE Trans Aerosp Electron Syst, 1995, 31: 617–625

    Article  Google Scholar 

  63. Gini F. Sub-optimum coherent radar detection in a mixture of K-distributed and Gaussian clutter. IEE Proc Radar Sonar Navig, 1997, 144: 39

    Article  Google Scholar 

  64. de Maio A, Conte E. Uniformly most powerful invariant detection in spherically invariant random vector distributed clutter. IET Radar Sonar Navig, 2010, 4: 560–563

    Article  Google Scholar 

  65. Conte E, Lops M, Ricci G. Adaptive matched filter detection in spherically invariant noise. IEEE Signal Process Lett, 1996, 3: 248–250

    Article  Google Scholar 

  66. Bidon S, Besson O, Tourneret J Y. The adaptive coherence estimator is the generalized likelihood ratio test for a class of heterogeneous environments. IEEE Signal Process Lett, 2008, 15: 281–284

    Article  Google Scholar 

  67. Conte E, Lops M, Ricci G. Adaptive detection schemes in compound-Gaussian clutter. IEEE Trans Aerosp Electron Syst, 1998, 34: 1058–1069

    Article  Google Scholar 

  68. Rangaswamy M. Statistical analysis of the nonhomogeneity detector for non-Gaussian interference backgrounds. IEEE Trans Signal Process, 2005, 53: 2101–2111

    Article  MathSciNet  MATH  Google Scholar 

  69. de Maio A, Foglia G, Conte E, et al. CFAR behavior of adaptive detectors: an experimental analysis. IEEE Trans Aerosp Electron Syst, 2005, 41: 233–251

    Article  Google Scholar 

  70. Conte E, de Maio A, Ricci G. Recursive estimation of the covariance matrix of a compound-Gaussian process and its application to adaptive CFAR detection. IEEE Trans Signal Process, 2002, 50: 1908–1915

    Article  Google Scholar 

  71. Conte E, de Maio A. Mitigation techniques for non-Gaussian sea clutter. IEEE J Ocean Eng, 2004, 29: 284–302

    Article  Google Scholar 

  72. Gao Y, Aubry A, de Maio A, et al. Adaptive target separation detection. IEEE Trans Aerosp Electron Syst, 2021, 57: 293–309

    Article  Google Scholar 

  73. de Maio A, Alfano G. Polarimetric adaptive detection in non-Gaussian noise. Signal Process, 2003, 83: 297–306

    Article  MATH  Google Scholar 

  74. de Maio A, Alfano G, Conte E. Polarization diversity detection in compound-gaussian clutter. IEEE Trans Aerosp Electron Syst, 2004, 40: 114–131

    Article  Google Scholar 

  75. Alfano G, de Maio A, Conte E. Polarization diversity detection of distributed targets in compound-Gaussian clutter. IEEE Trans Aerosp Electron Syst, 2004, 40: 755–765

    Article  Google Scholar 

  76. Liu J, Zhang Z J, Yang Y. Performance enhancement of subspace detection with a diversely polarized antenna. IEEE Signal Process Lett, 2012, 19: 4–7

    Article  Google Scholar 

  77. Hao C, Gazor S, Ma X, et al. Polarimetric detection and range estimation of a point-like target. IEEE Trans Aerosp Electron Syst, 2016, 52: 603–616

    Article  Google Scholar 

  78. Park H R, Li J, Wang H. Polarization-space-time domain generalized likelihood ratio detection of radar targets. Signal Process, 1995, 41: 153–164

    Article  MATH  Google Scholar 

  79. de Maio A, Ricci G. A polarimetric adaptive matched filter. Signal Process, 2001, 81: 2583–2589

    Article  MATH  Google Scholar 

  80. Raghavan R S, Pulsone N, McLaughlin D J. Performance of the GLRT for adaptive vector subspace detection. IEEE Trans Aerosp Electron Syst, 1996, 32: 1473–1487

    Article  Google Scholar 

  81. Lombardo P, Pastina D, Bucciarelli T. Adaptive polarimetric target detection with coherent radar. II. Detection against non-Gaussian background. IEEE Trans Aerosp Electron Syst, 2001, 37: 1207–1220

    Article  Google Scholar 

  82. Liu J, Zhang Z J, Yang Y. Optimal waveform design for generalized likelihood ratio and adaptive matched filter detectors using a diversely polarized antenna. Signal Processing, 2012, 92: 1126–1131

    Article  Google Scholar 

  83. Liu W, Xie W, Liu J, et al. Adaptive double subspace signal detection in Gaussian background-Part I: homogeneous environments. IEEE Trans Signal Process, 2014, 62: 2345–2357

    Article  MathSciNet  MATH  Google Scholar 

  84. Kraut S, Scharf L L, McWhorter L T. Adaptive subspace detectors. IEEE Trans Signal Process, 2001, 49: 1–16

    Article  Google Scholar 

  85. Pastina D, Lombardo P, Bucciarelli T. Adaptive polarimetric target detection with coherent radar. I. Detection against Gaussian background. IEEE Trans Aerosp Electron Syst, 2001, 37: 1194–1206

    Article  Google Scholar 

  86. Liu J, Zhang Z-J, Yang Y, et al. A CFAR adaptive subspace detector for first-order or second-order Gaussian signals based on a single observation. IEEE Trans Signal Process, 2011, 59: 5126–5140

    Article  MathSciNet  MATH  Google Scholar 

  87. Liu J, Zhang Z-J, Shui P L, et al. Exact performance analysis of an adaptive subspace detector. IEEE Trans Signal Process, 2012, 60: 4945–4950

    Article  MathSciNet  MATH  Google Scholar 

  88. Liu W, Wang Y L, Liu J, et al. Design and performance analysis of adaptive subspace detectors in orthogonal interference and gaussian noise. IEEE Trans Aerosp Electron Syst, 2016, 52: 2068–2079

    Article  Google Scholar 

  89. Hughes P K. A high-resolution radar detection strategy. IEEE Trans Aerosp Electron Syst, 1983, 19: 663–667

    Article  Google Scholar 

  90. Shuai X F, Kong L J, Yang J Y. Adaptive detection for distributed targets in Gaussian noise with Rao and Wald tests. Sci China Inf Sci, 2012, 55: 1290–1300

    Article  MathSciNet  MATH  Google Scholar 

  91. Hao C, Ma X, Shang X, et al. Adaptive detection of distributed targets in partially homogeneous environment with Rao and Wald tests. Signal Process, 2012, 92: 926–930

    Article  Google Scholar 

  92. Wang H, Cai L. On adaptive multiband signal detection with GLR algorithm. IEEE Trans Aerosp Electron Syst, 1991, 27: 225–233

    Article  Google Scholar 

  93. Conte E, de Maio A, Galdi C. CFAR detection of multidimensional signals: an invariant approach. IEEE Trans Signal Process, 2003, 51: 142–151

    Article  MathSciNet  MATH  Google Scholar 

  94. Liu W J, Xie W C, Wang Y L. Rao and Wald tests for distributed targets detection with unknown signal steering. IEEE Signal Process Lett, 2013, 20: 1086–1089

    Article  Google Scholar 

  95. Raghavan R S. A generalized version of ACE and performance analysis. IEEE Trans Signal Process, 2020, 68: 2574–2585

    Article  MathSciNet  MATH  Google Scholar 

  96. Besson O, Scharf L L, Kraut S. Adaptive detection of a signal known only to lie on a line in a known subspace, when primary and secondary data are partially homogeneous. IEEE Trans Signal Process, 2006, 54: 4698–4705

    Article  MATH  Google Scholar 

  97. Bose S, Steinhardt A O. Adaptive array detection of uncertain rank one waveforms. IEEE Trans Signal Process, 1996, 44: 2801–2809

    Article  Google Scholar 

  98. Liu W, Xie W, Liu J, et al. Detection of a distributed target with direction uncertainty. IET Radar Sonar Navig, 2014, 8: 1177–1183

    Article  Google Scholar 

  99. Liu W, Liu J, Huang L, et al. Robust GLRT approaches to signal detection in the presence of spatial-temporal uncertainty. Signal Process, 2016, 118: 272–284

    Article  Google Scholar 

  100. Liu W J, Gao F, Luo Y W, et al. GLRT-based generalized direction detector in partially homogeneous environment. Sci China Inf Sci, 2019, 62: 209303

    Article  MathSciNet  Google Scholar 

  101. Kelly E J, Forsythe K M. Adaptive Detection and Parameter Estimation for Multidimensional Signal Models. Technical Report. Lexington: Lincoln Laboratory, 1989

    Google Scholar 

  102. Liu W, Xie W, Liu J, et al. Adaptive double subspace signal detection in Gaussian background-Part II: partially homogeneous environments. IEEE Trans Signal Process, 2014, 62: 2358–2369

    Article  MathSciNet  MATH  Google Scholar 

  103. Raghavan R S. Maximal invariants and performance of some invariant hypothesis tests for an adaptive detection problem. IEEE Trans Signal Process, 2013, 61: 3607–3619

    Article  MathSciNet  MATH  Google Scholar 

  104. Raghavan R. Analysis of steering vector mismatch on adaptive noncoherent integration. IEEE Trans Aerosp Electron Syst, 2013, 49: 2496–2508

    Article  Google Scholar 

  105. Liu J, Liu W, Chen B, et al. Detection probability of a CFAR matched filter with signal steering vector errors. IEEE Signal Process Lett, 2015, 22: 2474–2478

    Article  Google Scholar 

  106. Kelly E J. Performance of an adaptive detection algorithm — rejection of unwanted signals. IEEE Trans Aerosp Electron Syst, 1989, 25: 122–133

    Article  Google Scholar 

  107. Richmond C D. Performance of the adaptive sidelobe blanker detection algorithm in homogeneous environments. IEEE Trans Signal Process, 2000, 48: 1235–1247

    Article  Google Scholar 

  108. Liu W, Liu J, Zhang C, et al. Performance prediction of subspace-based adaptive detectors with signal mismatch. Signal Process, 2016, 123: 122–126

    Article  Google Scholar 

  109. Zeira A, Friedlander B. Robust subspace detectors. In: Proceedings of the 31st Asilomar Conference on Signals, Systems and Computers, 1997. 778–782

  110. Zeira A, Friedlander B. Robust adaptive subspace detectors for space time processing. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1998. 1965–1968

  111. de Maio A, de Nicola S, Farina A, et al. Adaptive detection of a signal with angle uncertainty. IET Radar Sonar Navig, 2010, 4: 537–547

    Article  Google Scholar 

  112. Lee S, Nguyen M, Song I, et al. Detection schemes for range-spread targets based on the semidefinite problem. IEEE Trans Aerosp Electron Syst, 2019, 55: 57–69

    Article  Google Scholar 

  113. de Maio A. Robust adaptive radar detection in the presence of steering vector mismatches. IEEE Trans Aerosp Electron Syst, 2005, 41: 1322–1337

    Article  Google Scholar 

  114. Besson O. Detection of a signal in linear subspace with bounded mismatch. IEEE Trans Aerosp Electron Syst, 2006, 42: 1131–1139

    Article  Google Scholar 

  115. Besson O. Adaptive detection with bounded steering vectors mismatch angle. IEEE Trans Signal Process, 2007, 55: 1560–1564

    Article  MathSciNet  MATH  Google Scholar 

  116. de Maio A, Huang Y, Palomar D P, et al. Fractional QCQP with applications in ML steering direction estimation for radar detection. IEEE Trans Signal Process, 2011, 59: 172–185

    Article  MathSciNet  MATH  Google Scholar 

  117. Hao C, Bandiera F, Yang J, et al. Adaptive detection of multiple point-like targets under conic constraints. Progress In Electromagnetics Res, 2012, 129: 231–250

    Article  Google Scholar 

  118. Coluccia A, Ricci G, Besson O. Design of robust radar detectors through random perturbation of the target signature. IEEE Trans Signal Process, 2019, 67: 5118–5129

    Article  MathSciNet  MATH  Google Scholar 

  119. Pulsone N B, Rader C M. Adaptive beamformer orthogonal rejection test. IEEE Trans Signal Process, 2001, 49: 521–529

    Article  Google Scholar 

  120. Bandiera F, Besson O, Orlando D, et al. Derivation and analysis of an adaptive detector with enhanced mismatched signals rejection capabilities. In: Proceedings of the 41st Asilomar Conference on Signals, Systems and Computers, 2007. 2182–2186

  121. Hao C, Shang X, Bandiera F, et al. Bayesian radar detection with orthogonal rejection. IEICE Trans Fundamentals, 2012, 95: 596–599

    Article  Google Scholar 

  122. Coluccia A, Ricci G. A tunable W-ABORT-like detector with improved detection vs rejection capabilities trade-off. IEEE Signal Process Lett, 2015, 22: 713–717

    Article  Google Scholar 

  123. Liu J, Zhao H Y, Liu W, et al. Adaptive detection using both the test and training data for disturbance correlation estimation. Signal Process, 2017, 137: 309–318

    Article  Google Scholar 

  124. Liu W, Liu J, Huang L, et al. Distributed target detectors with capabilities of mismatched subspace signal rejection. IEEE Trans Aerosp Electron Syst, 2017, 53: 888–900

    Article  Google Scholar 

  125. Hou C, Yang J, Ma X, et al. Adaptive detection of distributed targets with orthogonal rejection. IET Radar Sonar Navig, 2012, 6: 483–493

    Article  Google Scholar 

  126. Liu W, Liu J, Du Q, et al. Distributed target detection in partially homogeneous environment when signal mismatch occurs. IEEE Trans Signal Process, 2018, 66: 3918–3928

    Article  MathSciNet  MATH  Google Scholar 

  127. Orlando D, Ricci G. A Rao test with enhanced selectivity properties in homogeneous scenarios. IEEE Trans Signal Process, 2010, 58: 5385–5390

    Article  MathSciNet  MATH  Google Scholar 

  128. Kalson S Z. An adaptive array detector with mismatched signal rejection. IEEE Trans Aerosp Electron Syst, 1992, 28: 195–207

    Article  Google Scholar 

  129. Hao C, Liu B, Yan S, et al. Parametric adaptive radar detector with enhanced mismatched signals rejection capabilities. EURASIP J Adv Signal Process, 2010, 2010: 375136

    Article  MATH  Google Scholar 

  130. Liu W, Xie W, Wang Y. Parametric detector in the situation of mismatched signals. IET Radar Sonar Navig, 2014, 8: 48–53

    Article  Google Scholar 

  131. Bandiera F, Orlando D, Ricci G. One- and two-stage tunable receivers. IEEE Trans Signal Process, 2009, 57: 3264–3273

    Article  MathSciNet  MATH  Google Scholar 

  132. Raghavan R S, Qiu H F, McLaughlin D J. CFAR detection in clutter with unknown correlation properties. IEEE Trans Aerosp Electron Syst, 1995, 31: 647–657

    Article  Google Scholar 

  133. Liu W, Xie W, Li R, et al. Adaptive detection in the presence of signal mismatch. J Syst Eng Electron, 2015, 26: 38–43

    Article  Google Scholar 

  134. Liu W, Xie W, Zhang Q, et al. A doubly parameterized detector for mismatched signals. Chin J Electron, 2015, 24: 152–156

    Article  Google Scholar 

  135. Liu J, Liu W, Chen B, et al. Modified Rao test for multichannel adaptive signal detection. IEEE Trans Signal Process, 2016, 64: 714–725

    Article  MathSciNet  MATH  Google Scholar 

  136. Liu J, Zhou S, Liu W, et al. Tunable adaptive detection in colocated MIMO radar. IEEE Trans Signal Process, 2018, 66: 1080–1092

    Article  MathSciNet  MATH  Google Scholar 

  137. Pulsone N B, Zatman M A. A computationally efficient two-step implementation of the GLRT. IEEE Trans Signal Process, 2000, 48: 609–616

    Article  Google Scholar 

  138. Bandiera F, Besson O, Orlando D, et al. An improved adaptive sidelobe blanker. IEEE Trans Signal Process, 2008, 56: 4152–4161

    Article  MathSciNet  MATH  Google Scholar 

  139. Bandiera F, Orlando D, Ricci G. A subspace-based adaptive sidelobe blanker. IEEE Trans Signal Process, 2008, 56: 4141–4151

    Article  MathSciNet  MATH  Google Scholar 

  140. Hao C, Liu B, Cai L. Performance analysis of a two-stage Rao detector. Signal Process, 2011, 91: 2141–2146

    Article  MATH  Google Scholar 

  141. Duan K, Liu M, Dai H, et al. A two-stage detector for mismatched subspace signals. IEEE Geosci Remote Sens Lett, 2017, 14: 2270–2274

    Article  Google Scholar 

  142. Bandiera F, Orlando D, Ricci G. Advanced radar detection schemes under mismatched signal models. Synthesis Lect Signal Process, 2009, 4: 1–105

    Article  Google Scholar 

  143. de Maio A, Orlando D. Feature article: a survey on two-stage decision schemes for point-like targets in Gaussian interference. IEEE Aerosp Electron Syst Mag, 2016, 31: 20–29

    Article  Google Scholar 

  144. Liu J, Li K, Zhang X, et al. A weighted detector for mismatched subspace signals. Signal Process, 2017, 140: 110–115

    Article  Google Scholar 

  145. Bandiera F, Besson O, Ricci G. An ABORT-like detector with improved mismatched signals rejection capabilities. IEEE Trans Signal Process, 2008, 56: 14–25

    Article  MathSciNet  MATH  Google Scholar 

  146. Briggs J N. Target Detection by Marine Radar. London: The Institution of Electrical Engineers, 2004

    Book  Google Scholar 

  147. Genova J. Electronic Warfare Signal Processing. Boston: Artech House, 2018

    Google Scholar 

  148. Scharf L L, Friedlander B. Matched subspace detectors. IEEE Trans Signal Process, 1994, 42: 2146–2157

    Article  Google Scholar 

  149. Behrens R T, Scharf L L. Signal processing applications of oblique projection operators. IEEE Trans Signal Process, 1994, 42: 1413–1424

    Article  Google Scholar 

  150. Scharf L L, McCloud M L. Blind adaptation of zero forcing projections and oblique pseudo-inverses for subspace detection and estimation when interference dominates noise. IEEE Trans Signal Process, 2002, 50: 2938–2946

    Article  Google Scholar 

  151. Besson O, Scharf L L, Vincent F. Matched direction detectors and estimators for array processing with subspace steering vector uncertainties. IEEE Trans Signal Process, 2005, 53: 4453–4463

    Article  MathSciNet  MATH  Google Scholar 

  152. Besson O, Scharf L L. CFAR matched direction detector. IEEE Trans Signal Process, 2006, 54: 2840–2844

    Article  MATH  Google Scholar 

  153. Wang P, Fang J, Li H, et al. Detection with target-induced subspace interference. IEEE Signal Process Lett, 2012, 19: 403–406

    Article  Google Scholar 

  154. Liu J, Zhang Z J, Cao Y, et al. Distributed target detection in subspace interference plus Gaussian noise. Signal Process, 2014, 95: 88–100

    Article  Google Scholar 

  155. Bandiera F, de Maio A, Greco A S, et al. Adaptive radar detection of distributed targets in homogeneous and partially homogeneous noise plus subspace interference. IEEE Trans Signal Process, 2007, 55: 1223–1237

    Article  MathSciNet  MATH  Google Scholar 

  156. Liu J, Li J. False alarm rate of the GLRT for subspace signals in subspace interference plus Gaussian noise. IEEE Trans Signal Process, 2019, 67: 3058–3069

    Article  MathSciNet  MATH  Google Scholar 

  157. Liu W, Liu J, Huang L, et al. Rao tests for distributed target detection in interference and noise. Signal Process, 2015, 117: 333–342

    Article  Google Scholar 

  158. Liu W, Liu J, Li H, et al. Multichannel signal detection based on Wald test in subspace interference and Gaussian noise. IEEE Trans Aerosp Electron Syst, 2019, 55: 1370–1381

    Article  Google Scholar 

  159. Wang Z. Modified Rao test for distributed target detection in interference and noise. Signal Process, 2020, 172: 107578

    Article  Google Scholar 

  160. Liu J, Li J. Analytical performance of rank-one signal detection in subspace interference plus Gaussian noise. IEEE Trans Aerosp Electron Syst, 2020, 56: 1595–1601

    Article  Google Scholar 

  161. Liu W, Wang Y L, Liu J, et al. Performance analysis of adaptive detectors for point targets in subspace interference and Gaussian noise. IEEE Trans Aerosp Electron Syst, 2018, 54: 429–441

    Article  Google Scholar 

  162. Liu W, Liu J, Gao Y, et al. Multichannel signal detection in interference and noise when signal mismatch happens. Signal Process, 2020, 166: 107268

    Article  Google Scholar 

  163. Aubry A, Carotenuto V, de Maio A, et al. Coincidence of maximal invariants for two adaptive radar detection problems. IEEE Signal Process Lett, 2016. doi: https://doi.org/10.1109/LSP.2016.2587800

  164. de Maio A, Orlando D. Adaptive radar detection of a subspace signal embedded in subspace structured plus Gaussian interference via invariance. IEEE Trans Signal Process, 2016, 64: 2156–2167

    Article  MathSciNet  MATH  Google Scholar 

  165. Ciuonzo D, de Maio A, Orlando D. A Unifying framework for adaptive radar detection in homogeneous plus structured interference-Part I: on the maximal invariant statistic. IEEE Trans Signal Process, 2016, 64: 2894–2906

    Article  MathSciNet  MATH  Google Scholar 

  166. Ciuonzo D, de Maio A, Orlando D. A unifying framework for adaptive radar detection in homogeneous plus structured interference-Part II: detectors design. IEEE Trans Signal Process, 2016, 64: 2907–2919

    Article  MathSciNet  MATH  Google Scholar 

  167. Ciuonzo D, de Maio A, Orlando D. On the statistical invariance for adaptive radar detection in partially homogeneous disturbance plus structured interference. IEEE Trans Signal Process, 2017, 65: 1222–1234

    Article  MathSciNet  MATH  Google Scholar 

  168. Bandiera F, Besson O, Orlando D, et al. GLRT-based direction detectors in homogeneous noise and subspace interference. IEEE Trans Signal Process, 2007, 55: 2386–2394

    Article  MathSciNet  MATH  Google Scholar 

  169. Li W, Tong H, Li K, et al. Wald tests for direction detection in noise and interference. Multidim Syst Sign Process, 2018, 29: 1563–1577

    Article  MATH  Google Scholar 

  170. Dong Y, Liu M, Li K, et al. Adaptive direction detection in deterministic interference and partially homogeneous noise. IEEE Signal Process Lett, 2017, 24: 599–603

    Article  Google Scholar 

  171. Bandiera F, Besson O, Ricci G. Direction detector for distributed targets in unknown noise and interference. Electron lett, 2013, 49: 68–69

    Article  Google Scholar 

  172. Richmond C D. Statistics of adaptive nulling and use of the generalized eigenrelation (GER) for modeling inhomogeneities in adaptive processing. IEEE Trans Signal Process, 2000, 48: 1263–1273

    Article  Google Scholar 

  173. Richmond C D. Performance of a class of adaptive detection algorithms in nonhomogeneous environments. IEEE Trans Signal Process, 2000, 48: 1248–1262

    Article  Google Scholar 

  174. Rabideau D J, Steinhardt A O. Improved adaptive clutter cancellation through data-adaptive training. IEEE Trans Aerosp Electron Syst, 1999, 35: 879–891

    Article  Google Scholar 

  175. Bandiera F, de Maio A, Ricci G. Adaptive CFAR radar detection with conic rejection. IEEE Trans Signal Process, 2007, 55: 2533–2541

    Article  MathSciNet  MATH  Google Scholar 

  176. de Maio A, de Nicola S, Huang Y W, et al. Adaptive detection and estimation in the presence of useful signal and interference mismatches. IEEE Trans Signal Process, 2009, 57: 436–450

    Article  MathSciNet  MATH  Google Scholar 

  177. Svensson A, Jakobsson A. Adaptive detection of a partly known signal corrupted by strong interference. IEEE Signal Process Lett, 2011, 18: 729–732

    Article  Google Scholar 

  178. Liu W, Liu J, Wang L, et al. Adaptive array detection in noise and completely unknown jamming. Digital Signal Process, 2015, 46: 41–48

    Article  MathSciNet  Google Scholar 

  179. Liu W, Liu J, Hu X, et al. Statistical performance analysis of the adaptive orthogonal rejection detector. IEEE Signal Process Lett, 2016, 23: 873–877

    Article  Google Scholar 

  180. Besson O. Detection in the presence of surprise or undernulled interference. IEEE Signal Process Lett, 2007, 14: 352–354

    Article  Google Scholar 

  181. Liu W J, Han H, Liu J, et al. Multichannel radar adaptive signal detection in interference and structure nonhomogeneity. Sci China Inf Sci, 2017, 60: 112302

    Article  Google Scholar 

  182. Besson O, Orlando D. Adaptive detection in nonhomogeneous environments using the generalized eigenrelation. IEEE Signal Process Lett, 2007, 14: 731–734

    Article  Google Scholar 

  183. Hao C, Orlando D, Hou C. Rao and Wald tests for nonhomogeneous scenarios. Sensors, 2012, 12: 4730–4736

    Article  Google Scholar 

  184. Shang Z, Du Q, Tang Z, et al. Multichannel adaptive signal detection in structural nonhomogeneous environment characterized by the generalized eigenrelation. Signal Process, 2018, 148: 214–222

    Article  Google Scholar 

  185. Tang P, Wang Y L, Liu W, et al. Adaptive subspace signal detection in a type of structure-nonhomogeneity environment. Signal Process, 2020, 173: 107600

    Article  Google Scholar 

  186. Orlando D. A novel noise jamming detection algorithm for radar applications. IEEE Signal Process Lett, 2017, 24: 206–210

    Article  Google Scholar 

  187. Addabbo P, Besson O, Orlando D, et al. Adaptive detection of coherent radar targets in the presence of noise jamming. IEEE Trans Signal Process, 2019, 67: 6498–6510

    Article  MathSciNet  MATH  Google Scholar 

  188. Yan L, Addabbo P, Hao C, et al. New ECCM techniques against noiselike and/or coherent interferers. IEEE Trans Aerosp Electron Syst, 2020, 56: 1172–1188

    Article  Google Scholar 

  189. Raghavan R S. A CFAR detector for mismatched eigenvalues of training sample covariance matrix. IEEE Trans Signal Process, 2019, 67: 4624–4635

    Article  MathSciNet  MATH  Google Scholar 

  190. Besson O. Detection of Gaussian signal using adaptively whitened data. IEEE Signal Process Lett, 2019, 26: 430–434

    Article  Google Scholar 

  191. Besson O. Adaptive detection using whitened data when some of the training samples undergo covariance mismatch. IEEE Signal Process Lett, 2020, 27: 795–799

    Article  Google Scholar 

  192. Liu J, Liu W, Liu H. A simpler proof of rapid convergence rate in adaptive arrays. IEEE Trans Aerosp Electron Syst, 2017, 53: 135–136

    Article  Google Scholar 

  193. Gerlach K. Outlier resistant adaptive matched filtering. IEEE Trans Aerosp Electron Syst, 2002, 38: 885–901

    Article  Google Scholar 

  194. Rangaswamy M, Michels J H, Himed B. Statistical analysis of the non-homogeneity detector for STAP applications. Digital Signal Process, 2004, 14: 253–267

    Article  Google Scholar 

  195. Han S, de Maio A, Carotenuto V, et al. Censoring outliers in radar data: an approximate ML approach and its analysis. IEEE Trans Aerosp Electron Syst, 2019, 55: 534–546

    Article  Google Scholar 

  196. Besson O, Tourneret J Y, Bidon S. Knowledge-aided bayesian detection in heterogeneous environments. IEEE Signal Process Lett, 2007, 14: 355–358

    Article  Google Scholar 

  197. Bidon S, Besson O, Tourneret J Y. A Bayesian approach to adaptive detection in nonhomogeneous environments. IEEE Trans Signal Process, 2008, 56: 205–217

    Article  MathSciNet  MATH  Google Scholar 

  198. Liu J, Han J, Zhang Z J, et al. Bayesian detection for MIMO radar in Gaussian clutter. IEEE Trans Signal Process, 2018, 66: 6549–6559

    Article  MathSciNet  MATH  Google Scholar 

  199. de Maio A, Farina A, Foglia G. Knowledge-aided Bayesian radar detectors & their application to live data. IEEE Trans Aerosp Electron Syst, 2010, 46: 170–183

    Article  Google Scholar 

  200. Wang P, Sahinoglu Z, Pun M O, et al. Knowledge-aided adaptive coherence estimator in stochastic partially homogeneous environments. IEEE Signal Process Lett, 2011, 18: 193–196

    Article  Google Scholar 

  201. Zhou Y, Zhang L-R. Knowledge-aided Bayesian radar adaptive detection in heterogeneous environment: GLRT, Rao and Wald tests. Int J Electron Commun, 2012, 66: 239–243

    Article  Google Scholar 

  202. Bandiera F, Besson O, Coluccia A, et al. ABORT-like detectors: a Bayesian approach. IEEE Trans Signal Process, 2015, 63: 5274–5284

    Article  MathSciNet  MATH  Google Scholar 

  203. Bandiera F, Besson O, Ricci G. Adaptive detection of distributed targets in compound-gaussian noise without secondary data: a Bayesian approach. IEEE Trans Signal Process, 2011, 59: 5698–5708

    Article  MathSciNet  MATH  Google Scholar 

  204. Roman J R, Rangaswamy M, Davis D W, et al. Parametric adaptive matched filter for airborne radar applications. IEEE Trans Aerosp Electron Syst, 2000, 36: 677–692

    Article  Google Scholar 

  205. Sohn K J, Li H B, Himed B. Parametric Rao test for multichannel adaptive signal detection. IEEE Trans Aerosp Electron Syst, 2007, 43: 921–933

    Article  MATH  Google Scholar 

  206. Sohn K J, Li H, Himed B. Parametric GLRT for multichannel adaptive signal detection. IEEE Trans Signal Process, 2007, 55: 5351–5360

    Article  MathSciNet  MATH  Google Scholar 

  207. Li H B, Michels J H. Parametric adaptive signal detection for hyperspectral imaging. IEEE Trans Signal Process, 2006, 54: 2704–2715

    Article  MATH  Google Scholar 

  208. Michels J H, Himed B, Rangaswamy M. Performance of STAP tests in Gaussian and compound-Gaussian clutter. Digital Signal Process, 2000, 10: 309–324

    Article  Google Scholar 

  209. Alfano G, de Maio A, Farina A. Model-based adaptive detection of range-spread targets. IEE Proc Radar Sonar Navig, 2004, 151: 2

    Article  Google Scholar 

  210. Sohn K J, Li H, Himed B. Recursive parametric tests for multichannel adaptive signal detection. IET Radar Sonar Navig, 2008, 2: 63–70

    Article  Google Scholar 

  211. Abramovich Y I, Johnson B A, Spencer N K. Two-dimensional multivariate parametric models for radar applications-Part I: maximum-entropy extensions for Toeplitz-block matrices. IEEE Trans Signal Process, 2008, 56: 5509–5526

    Article  MathSciNet  MATH  Google Scholar 

  212. Abramovich Y I, Johnson B A, Spencer N K. Two-dimensional multivariate parametric models for radar applications-Part II: maximum-entropy extensions for hermitian-block matrices. IEEE Trans Signal Process, 2008, 56: 5527–5539

    Article  MathSciNet  MATH  Google Scholar 

  213. Abramovich Y I, Spencer N K, Johnson B A. Band-inverse TVAR covariance matrix estimation for adaptive detection. IEEE Trans Aerosp Electron Syst, 2010, 46: 375–396

    Article  Google Scholar 

  214. Wang P, Li H, Himed B. A new parametric GLRT for multichannel adaptive signal detection. IEEE Trans Signal Process, 2010, 58: 317–325

    Article  MathSciNet  MATH  Google Scholar 

  215. Wang P, Li H, Himed B. A Bayesian parametric test for multichannel adaptive signal detection in nonhomogeneous environments. IEEE Signal Process Lett, 2010, 17: 351–354

    Article  Google Scholar 

  216. Abramovich Y I, Rangaswamy M, Johnson B A, et al. Performance analysis of two-dimensional parametric STAP for airborne radar using KASSPER data. IEEE Trans Aerosp Electron Syst, 2011, 47: 118–139

    Article  Google Scholar 

  217. Jiang C, Li H, Rangaswamy M. Conjugate gradient parametric detection of multichannel signals. IEEE Trans Aerosp Electron Syst, 2012, 48: 1521–1536

    Article  Google Scholar 

  218. Jian T, He Y, Su F, et al. Adaptive detection of range-spread targets without secondary data in multichannel autoregressive process. Digital Signal Process, 2013, 23: 1686–1694

    Article  MathSciNet  Google Scholar 

  219. Wang P, Wang Z, Li H, et al. Knowledge-aided parametric adaptive matched filter with automatic combining for covariance estimation. IEEE Trans Signal Process, 2014, 62: 4713–4722

    Article  MathSciNet  MATH  Google Scholar 

  220. Shi B, Hao C, Hou C, et al. Parametric Rao test for multichannel adaptive detection of range-spread target in partially homogeneous environments. Signal Process, 2015, 108: 421–429

    Article  Google Scholar 

  221. Mennad A, Younsi A, El Korso M N, et al. Adaptive detection of range-spread target in compound-Gaussian clutter without secondary data. Digital Signal Process, 2017, 60: 90–98

    Article  Google Scholar 

  222. Gao Y, Li H, Himed B. Adaptive subspace tests for multichannel signal detection in auto-regressive disturbance. IEEE Trans Signal Process, 2018, 66: 5577–5587

    Article  MathSciNet  MATH  Google Scholar 

  223. Yan L, Hao C, Orlando D, et al. Parametric space-time detection and range estimation of point-like targets in partially homogeneous environment. IEEE Trans Aerosp Electron Syst, 2020, 56: 1228–1242

    Article  Google Scholar 

  224. Fuhrmann D R. Application of Toeplitz covariance estimation to adaptive beamforming and detection. IEEE Trans Signal Process, 1991, 39: 2194–2198

    Article  Google Scholar 

  225. Raghavan R S. CFAR detection in clutter with a kronecker covariance structure. IEEE Trans Aerosp Electron Syst, 2017, 53: 619–629

    Article  Google Scholar 

  226. Wang Y, Xia W, He Z, et al. Polarimetric detection in compound Gaussian clutter with Kronecker structured covariance matrix. IEEE Trans Signal Process, 2017, 65: 4562–4576

    Article  MathSciNet  MATH  Google Scholar 

  227. Haimovich A M, Bar-Ness Y. An eigenanalysis interference canceler. IEEE Trans Signal Process, 1991, 39: 76–84

    Article  Google Scholar 

  228. Wang Y L, Liu W J, Xie W C, et al. Reduced-rank space-time adaptive detection for airborne radar. Sci China Inf Sci, 2014, 57: 082310

    Article  Google Scholar 

  229. Goldstein J S, Reed I S. Reduced-rank adaptive filtering. IEEE Trans Signal Process, 1997, 45: 492–496

    Article  Google Scholar 

  230. Goldstein J S, Reed I S, Scharf L L. A multistage representation of the Wiener filter based on orthogonal projections. IEEE Trans Inform Theor, 1998, 44: 2943–2959

    Article  MathSciNet  MATH  Google Scholar 

  231. Goldstein J S, Reed I S, Zulch P A. Multistage partially adaptive STAP CFAR detection algorithm. IEEE Trans Aerosp Electron Syst, 1999, 35: 645–661

    Article  Google Scholar 

  232. Pados D A, Karystinos G N. An iterative algorithm for the computation of the MVDR filter. IEEE Trans Signal Process, 2001, 49: 290–300

    Article  Google Scholar 

  233. Fa R, de Lamare R C. Reduced-rank STAP algorithms using joint iterative optimization of filters. IEEE Trans Aerosp Electron Syst, 2011, 47: 1668–1684

    Article  Google Scholar 

  234. Chen Z, Li H, Rangaswamy M. Conjugate gradient adaptive matched filter. IEEE Trans Aerosp Electron Syst, 2015, 51: 178–191

    Article  Google Scholar 

  235. Chen W S, Mitra U, Schniter P. On the equivalence of three reduced rank linear estimators with applications to DS-CDMA. IEEE Trans Inform Theor, 2002, 48: 2609–2614

    Article  MathSciNet  MATH  Google Scholar 

  236. Scharf L L, Chong E K P, Zoltowski M D, et al. Subspace expansion and the equivalence of conjugate direction and multistage Wiener filters. IEEE Trans Signal Process, 2008, 56: 5013–5019

    Article  MathSciNet  MATH  Google Scholar 

  237. Broyden C G, Vespucci M T. Krylov Solvers for Linear Algebraic Systems. London: Elsevier, 2004

    MATH  Google Scholar 

  238. Dietl G K E. Linear Estimation and Detection in Krylov Subspaces. Berlin: Springer, 2007

    MATH  Google Scholar 

  239. Liu W J, Xie W C, Li R F, et al. Adaptive detectors in the Krylov subspace. Sci China Inf Sci, 2014, 57: 102310

    Article  MathSciNet  Google Scholar 

  240. Liu W, Xie W, Wang Y. Adaptive coherence estimator based on the Krylov subspace technique for airborne radar. J Syst Eng Electr, 2015, 26: 705–712

    Google Scholar 

  241. Gau Y-L, Reed I S. An improved reduced-rank CFAR space-time adaptive radar detection algorithm. IEEE Trans Signal Process, 1998, 46: 2139–2146

    Article  Google Scholar 

  242. Reed I S, Gau Y-L. A fast CFAR detection space-time adaptive processing algorithm. IEEE Trans Signal Process, 1999, 47: 1151–1154

    Article  Google Scholar 

  243. Reed I S, Gau Y L. Noncoherent summation of multiple reduced-rank test statistics for frequency-hopped STAP. IEEE Trans Signal Process, 1999, 47: 1708–1711

    Article  MathSciNet  Google Scholar 

  244. Liu W, Xie W, Wang Y. Adaptive detection based on orthogonal partition of the primary and secondary data. J Syst Eng Electron, 2014, 25: 34–42

    Article  Google Scholar 

  245. Li H, Song W, Liu W, et al. Moving target detection with limited training data based on the subspace orthogonal projection. IET Radar Sonar Navig, 2018, 12: 679–684

    Article  Google Scholar 

  246. Liu W, Xie W, Wang Y L. Diagonally loaded space-time adaptive detection. In: Proceedings of 2011 IEEE CIE International Conference on Radar, 2011. 1115–1119

  247. de Maio A, Orlando D, Hao C, et al. Adaptive detection of point-like targets in spectrally symmetric interference. IEEE Trans Signal Process, 2016, 64: 3207–3220

    Article  MathSciNet  MATH  Google Scholar 

  248. Nitzberg R. Application of maximum likelihood estimation of persymmetric covariance matrices to adaptive processing. IEEE Trans Aerosp Electron Syst, 1980, AES-16: 124–127

    Article  Google Scholar 

  249. de Maio A. Maximum likelihood estimation of structured persymmetric covariance matrices. Signal Process, 2003, 83: 633–640

    Article  MATH  Google Scholar 

  250. Liu J, Liu W, Liu H, et al. Average SINR calculation of a persymmetric sample matrix inversion beamformer. IEEE Trans Signal Process, 2016, 64: 2135–2145

    Article  MathSciNet  MATH  Google Scholar 

  251. Liu J, Orlando D, Addabbo P, et al. SINR distribution for the persymmetric SMI beamformer with steering vector mismatches. IEEE Trans Signal Process, 2019, 67: 1382–1392

    Article  MathSciNet  MATH  Google Scholar 

  252. Pailloux G, Forster P, Ovarlez J P, et al. Persymmetric adaptive radar detectors. IEEE Trans Aerosp Electron Syst, 2011, 47: 2376–2390

    Article  Google Scholar 

  253. Hao C, Gazor S, Foglia G, et al. Persymmetric adaptive detection and range estimation of a small target. IEEE Trans Aerosp Electron Syst, 2015, 51: 2590–2604

    Article  Google Scholar 

  254. Liu J, Cui G, Li H, et al. On the performance of a persymmetric adaptive matched filter. IEEE Trans Aerosp Electron Syst, 2015, 51: 2605–2614

    Article  Google Scholar 

  255. de Maio A, Orlando D. An invariant approach to adaptive radar detection under covariance persymmetry. IEEE Trans Signal Process, 2015, 63: 1297–1309

    Article  MathSciNet  MATH  Google Scholar 

  256. de Maio A, Orlando D, Soloveychik I, et al. Invariance theory for adaptive detection in interference with group symmetric covariance matrix. IEEE Trans Signal Process, 2016, 64: 6299–6312

    Article  MathSciNet  MATH  Google Scholar 

  257. Cai L, Wang H. A persymmetric modified-SMI algorithm. Signal Process, 1991, 23: 27–34

    Article  MathSciNet  Google Scholar 

  258. Cai L, Wang H. A persymmetric multiband GLR algorithm. IEEE Trans Aerosp Electron Syst, 1992, 28: 806–816

    Article  Google Scholar 

  259. Liu J, Li J. Mismatched signal rejection performance of the persymmetric GLRT detector. IEEE Trans Signal Process, 2019, 67: 1610–1619

    Article  MathSciNet  MATH  Google Scholar 

  260. Liu J, Liu W, Tang B, et al. Distributed target detection exploiting persymmetry in Gaussian clutter. IEEE Trans Signal Process, 2019, 67: 1022–1033

    Article  MathSciNet  MATH  Google Scholar 

  261. Hao C, Orlando D, Ma X, et al. Persymmetric detectors with enhanced rejection capabilities. IET Radar Sonar Navig, 2014, 8: 557–563

    Article  Google Scholar 

  262. Casillo M, de Maio A, Iommelli S, et al. A persymmetric GLRT for adaptive detection in partially-homogeneous environment. IEEE Signal Process Lett, 2007, 14: 1016–1019

    Article  Google Scholar 

  263. Hao C, Orlando D, Ma X, et al. Persymmetric Rao and Wald tests for partially homogeneous environment. IEEE Signal Process Lett, 2012, 19: 587–590

    Article  Google Scholar 

  264. Gao Y, Liao G, Zhu S, et al. Persymmetric adaptive detectors in homogeneous and partially homogeneous environments. IEEE Trans Signal Process, 2014, 62: 331–342

    Article  MathSciNet  MATH  Google Scholar 

  265. Hao C, Orlando D, Foglia G, et al. Persymmetric adaptive detection of distributed targets in partially-homogeneous environment. Digital Signal Process, 2014, 24: 42–51

    Article  MathSciNet  Google Scholar 

  266. Wang Z, Li M, Chen H, et al. Persymmetric detectors of distributed targets in partially homogeneous disturbance. Signal Process, 2016, 128: 382–388

    Article  Google Scholar 

  267. Ciuonzo D, Orlando D, Pallotta L. On the maximal invariant statistic for adaptive radar detection in partially homogeneous disturbance with persymmetric Covariance. IEEE Signal Process Lett, 2016, 23: 1830–1834

    Article  Google Scholar 

  268. Liu J, Liu W, Gao Y, et al. Persymmetric adaptive detection of subspace signals: algorithms and performance analysis. IEEE Trans Signal Process, 2018, 66: 6124–6136

    Article  MathSciNet  MATH  Google Scholar 

  269. Liu J, Sun S, Liu W. One-step persymmetric GLRT for subspace signals. IEEE Trans Signal Process, 2019, 67: 3639–3648

    Article  MathSciNet  MATH  Google Scholar 

  270. Mao L, Gao Y, Yan S, et al. Persymmetric subspace detection in structured interference and non-homogeneous disturbance. IEEE Signal Process Lett, 2019, 26: 928–932

    Article  Google Scholar 

  271. Liu J, Liu W, Tang B, et al. Persymmetric adaptive detection in subspace interference plus gaussian noise. Signal Process, 2020, 167: 107316

    Article  Google Scholar 

  272. Liu J, Jian T, Liu W, et al. Persymmetric adaptive detection with improved robustness to steering vector mismatches. Signal Process, 2020, 176: 107669

    Article  Google Scholar 

  273. Liu J, Liu W, Hao C, et al. Persymmetric subspace detectors with multiple observations in homogeneous environments. IEEE Trans Aerosp Electron Syst, 2020, 56: 3276–3284

    Article  Google Scholar 

  274. Conte E, de Maio A. Distributed target detection in compound-Gaussian noise with Rao and Wald tests. IEEE Trans Aerosp Electron Syst, 2003, 39: 568–582

    Article  Google Scholar 

  275. Gao Y C, Liao G S, Zhu S Q, et al. A persymmetric GLRT for adaptive detection in compound-Gaussian clutter with random texture. IEEE Signal Process Lett, 2013, 20: 615–618

    Article  Google Scholar 

  276. Guo X, Tao H, Zhao H Y, et al. Persymmetric Rao and Wald tests for adaptive detection of distributed targets in compound-Gaussian noise. IET Radar Sonar Navig, 2017, 11: 453–458

    Article  Google Scholar 

  277. Liu J, Liu S, Liu W, et al. Persymmetric adaptive detection of distributed targets in compound-Gaussian sea clutter with Gamma texture. Signal Process, 2018, 152: 340–349

    Article  Google Scholar 

  278. Liu J, Li H, Himed B. Persymmetric adaptive target detection with distributed MIMO radar. IEEE Trans Aerosp Electron Syst, 2015, 51: 372–382

    Article  Google Scholar 

  279. Liu J, Liu W, Han J, et al. Persymmetric GLRT detection in MIMO radar. IEEE Trans Veh Technol, 2018, 67: 11913–11923

    Article  Google Scholar 

  280. Liu J, Han J, Zhang Z J, et al. Target detection exploiting covariance matrix structures in MIMO radar. Signal Process, 2019, 154: 174–181

    Article  Google Scholar 

  281. Liu J, Han J, Liu W, et al. Persymmetric Rao test for MIMO radar in Gaussian disturbance. Signal Processing, 2019, 165: 30–36

    Article  Google Scholar 

  282. Billingsley J B, Farina A, Gini F, et al. Statistical analyses of measured radar ground clutter data. IEEE Trans Aerosp Electron Syst, 1999, 35: 579–593

    Article  Google Scholar 

  283. Conte E, de Maio A, Farina A, et al. Statistical tests for higher order analysis of radar clutter their application to L-band measured data. IEEE Trans Aerosp Electron Syst, 2005, 41: 205–218

    Article  Google Scholar 

  284. Yan S, Massaro D, Orlando D, et al. Adaptive detection and range estimation of point-like targets with symmetric spectrum. IEEE Signal Process Lett, 2017, 24: 1744–1748

    Article  Google Scholar 

  285. Foglia G, Hao C, Farina A, et al. Adaptive detection of point-like targets in partially homogeneous clutter with symmetric spectrum. IEEE Trans Aerosp Electron Syst, 2017, 53: 2110–2119

    Article  Google Scholar 

  286. Wang P, Li H, Himed B. Knowledge-aided parametric tests for multichannel adaptive signal detection. IEEE Trans Signal Process, 2011, 59: 5970–5982

    Article  MathSciNet  MATH  Google Scholar 

  287. Wang P, Sahinoglu Z, Pun M O, et al. Persymmetric parametric adaptive matched filter for multichannel adaptive signal detection. IEEE Trans Signal Process, 2012, 60: 3322–3328

    Article  MathSciNet  MATH  Google Scholar 

  288. Gao Y, Liao G, Zhu S, et al. Generalised persymmetric parametric adaptive coherence estimator for multichannel adaptive signal detection. IET Radar Sonar Navig, 2015, 9: 550–558

    Article  Google Scholar 

  289. Ginolhac G, Forster P, Pascal F, et al. Exploiting persymmetry for low-rank space time adaptive processing. Signal Processing, 2014, 97: 242–251

    Article  Google Scholar 

  290. Hao C, Orlando D, Foglia G, et al. Knowledge-based adaptive detection: joint exploitation of clutter and system symmetry properties. IEEE Signal Process Lett, 2016, 23: 1489–1493

    Article  Google Scholar 

  291. Foglia G, Hao C, Giunta G, et al. Knowledge-aided adaptive detection in partially homogeneous clutter: joint exploitation of persymmetry and symmetric spectrum. Digital Signal Process, 2017, 67: 131–138

    Article  Google Scholar 

  292. Carotenuto V, de Maio A, Orlando D, et al. Radar detection architecture based on interference covariance structure classification. IEEE Trans Aerosp Electron Syst, 2019, 55: 607–618

    Article  Google Scholar 

  293. Klemm R. Adaptive airborne MTI: an auxiliary channel approach. IEE Proc, 1987, 134: 269–276

    Google Scholar 

  294. DiPietro R C. Extended factored space-time processing for airborne radar systems. In: Proceedings of the 25th Asilomar Conference on Signals, Systems and Computers, 1992. 425–430

  295. Wang Y-L, Chen J-W, Bao Z, et al. Robust space-time adaptive processing for airborne radar in nonhornogeneous clutter environments. IEEE Trans Aerosp Electron Syst, 2003, 39: 70–81

    Article  Google Scholar 

  296. Brown R D, Schneible R A, Wicks M C, et al. STAP for clutter suppression with sum and difference beams. IEEE Trans Aerosp Electron Syst, 2000, 36: 634–646

    Article  Google Scholar 

  297. Zhang W, He Z, Li J, et al. A method for finding best channels in beam-space post-Doppler reduced-dimension STAP. IEEE Trans Aerosp Electron Syst, 2014, 50: 254–264

    Article  Google Scholar 

  298. Cai Y, Wu X, Zhao M, et al. Low-complexity reduced-dimension space-time adaptive processing for navigation receivers. IEEE Trans Aerosp Electron Syst, 2018, 54: 3160–3168

    Article  Google Scholar 

  299. Yang Z, Wang Z, Liu W, et al. Reduced-dimension space-time adaptive processing with sparse constraints on beam-Doppler selection. Signal Process, 2019, 157: 78–87

    Article  Google Scholar 

  300. Wang H, Cai L J. On adaptive spatial-temporal processing for airborne surveillance radar systems. IEEE Trans Aerosp Electron Syst, 1994, 30: 660–670

    Article  Google Scholar 

  301. Ayoub T F, Haimovich A R. Modified GLRT signal detection algorithm. IEEE Trans Aerosp Electron Syst, 2000, 36: 810–818

    Article  Google Scholar 

  302. Jin Y W, Friedlander B. Reduced-rank adaptive detection of distributed sources using subarrays. IEEE Trans Signal Process, 2005, 53: 13–25

    Article  MathSciNet  MATH  Google Scholar 

  303. Besson O. Adaptive detection using randomly reduced dimension generalized likelihood ratio test. Signal Process, 2020, 166: 107265

    Article  Google Scholar 

  304. Wang Z, Zhao Z, Ren C, et al. Adaptive detection of point-like targets based on a reduced-dimensional data model. Signal Process, 2019, 158: 36–47

    Article  Google Scholar 

  305. Wang Z. Distributed target detection using samples filtered with normalized conjugate signal steering vector. Circ Syst Signal Process, 2020, 39: 4762–4774

    Article  Google Scholar 

  306. Liu W, Liu J, Huang L, et al. Performance analysis of reduced-dimension subspace signal filtering and detection in sample-starved environment. J Franklin Institute, 2019, 356: 629–653

    Article  MathSciNet  MATH  Google Scholar 

  307. Wang Z. Adaptive detection of multichannel signals without training data. Signal Process, 2020, 176: 107710

    Article  Google Scholar 

  308. Li J, Stoica P. MIMO Radar Signal Processing. Hoboken: Wiley, 2009

    Google Scholar 

  309. Haimovich A, Blum R, Cimini L. MIMO radar with widely separated antennas. IEEE Signal Process Mag, 2008, 25: 116–129

    Article  Google Scholar 

  310. Li J, Stoica P. MIMO radar with colocated antennas. IEEE Signal Process Mag, 2007, 24: 106–114

    Article  Google Scholar 

  311. Fishler E, Haimovich A, Blum R S, et al. Spatial diversity in radars’ models and detection performance. IEEE Trans Signal Process, 2006, 54: 823–838

    Article  MATH  Google Scholar 

  312. Du C, Thompson J S, Petillot Y R. Predicted detection performance of MIMO radar. IEEE Signal Process Lett, 2008, 15: 83–86

    Article  Google Scholar 

  313. Tajer A, Jajamovich G H, Wang X, et al. Optimal joint target detection and parameter estimation by MIMO radar. IEEE J Sel Top Signal Process, 2010, 4: 127–145

    Article  Google Scholar 

  314. Akcakaya M, Nehorai A. MIMO radar detection and adaptive design under a phase synchronization mismatch. IEEE Trans Signal Process, 2010, 58: 4994–5005

    Article  MathSciNet  MATH  Google Scholar 

  315. Gogineni S, Nehorai A. Polarimetric MIMO radar with distributed antennas for target detection. IEEE Trans Signal Process, 2010, 58: 1689–1697

    Article  MathSciNet  MATH  Google Scholar 

  316. Sheikhi A, Zamani A. Temporal coherent adaptive target detection for multi-input multi-output radars in clutter. IET Radar Sonar Navig, 2008, 2: 86–96

    Article  Google Scholar 

  317. Liu J, Zhang Z J, Cao Y H, et al. A closed-form expression for false alarm rate of adaptive MIMO-GLRT detector with distributed MIMO radar. Signal Process, 2013, 93: 2771–2776

    Article  Google Scholar 

  318. Li N, Cui G, Kong L, et al. MIMO radar moving target detection against compound-Gaussian clutter. Circ Syst Signal Process, 2014, 33: 1819–1839

    Article  Google Scholar 

  319. Li N, Cui G, Yang H, et al. Adaptive detection of moving target with MIMO radar in heterogeneous environments based on Rao and Wald tests. Signal Process, 2015, 114: 198–208

    Article  Google Scholar 

  320. Li N, Cui G, Kong L, et al. Moving target detection for polarimetric multiple-input multiple-output radar in Gaussian clutter. IET Radar Sonar Navig, 2015, 9: 285–298

    Article  Google Scholar 

  321. He Q, Lehmann N H, Blum R S, et al. MIMO radar moving target detection in homogeneous clutter. IEEE Trans Aerosp Electron Syst, 2010, 46: 1290–1301

    Article  Google Scholar 

  322. Wang P, Li H, Himed B. Moving target detection using distributed MIMO radar in clutter with nonhomogeneous power. IEEE Trans Signal Process, 2011, 59: 4809–4820

    Article  MathSciNet  MATH  Google Scholar 

  323. Akcakaya M, Nehorai A. MIMO radar sensitivity analysis for target detection. IEEE Trans Signal Process, 2011, 59: 3241–3250

    Article  MathSciNet  MATH  Google Scholar 

  324. de Maio A, Lops M, Venturino L. Diversity-integration tradeoffs in MIMO detection. IEEE Trans Signal Process, 2008, 56: 5051–5061

    Article  MathSciNet  MATH  Google Scholar 

  325. de Maio A, Lops M. Design principles of MIMO radar detectors. IEEE Trans Aerosp Electron Syst, 2007, 43: 886–898

    Article  Google Scholar 

  326. Naghsh M M, Modarres-Hashemi M. Exact theoretical performance analysis of optimum detector in statistical multi-input multi-output radars. IET Radar Sonar Navig, 2012, 6: 99–111

    Article  Google Scholar 

  327. Li N, Cui G, Kong L, et al. Rao and Wald tests design of multiple-input multiple-output radar in compound-Gaussian clutter. IET Radar Sonar Navig, 2012, 6: 729–738

    Article  Google Scholar 

  328. Zhang T X, Cui G L, Kong L J, et al. Adaptive Bayesian detection using MIMO radar in spatially heterogeneous clutter. IEEE Signal Process Lett, 2013, 20: 547–550

    Article  Google Scholar 

  329. Li N, Yang H, Cui G, et al. Adaptive two-step Bayesian MIMO detectors in compound-Gaussian clutter. Signal Process, 2019, 161: 1–13

    Article  Google Scholar 

  330. Cui G, Kong L, Yang X. GLRT-based detection algorithm for polarimetric MIMO radar against SIRV clutter. Circ Syst Signal Process, 2012, 31: 1033–1048

    Article  MathSciNet  Google Scholar 

  331. Cui G, Kong L, Yang X, et al. Distributed target detection with polarimetric MIMO radar in compound-Gaussian clutter. Digital Signal Process, 2012, 22: 430–438

    Article  MathSciNet  Google Scholar 

  332. Kong L, Cui G, Yang X, et al. Rao and Wald tests design of polarimetric multiple-input multiple-output radar in compound-Gaussian clutter. IET Signal Process, 2011, 5: 85–96

    Article  Google Scholar 

  333. Cui G, Kong L, Yang X, et al. The Rao and Wald tests designed for distributed targets with polarization MIMO radar in compound-Gaussian clutter. Circ Syst Signal Process, 2012, 31: 237–254

    Article  MathSciNet  MATH  Google Scholar 

  334. Bekkerman I, Tabrikian J. Target detection and localization using MIMO radars and sonars. IEEE Trans Signal Process, 2006, 54: 3873–3883

    Article  MATH  Google Scholar 

  335. Cui G, Kong L, Yang X. Performance analysis of colocated MIMO radars with randomly distributed arrays in compound-Gaussian clutter. Circ Syst Signal Process, 2012, 31: 1407–1422

    Article  MathSciNet  Google Scholar 

  336. Li J, Xu L Z, Stoica P, et al. Range compression and waveform optimization for MIMO radar: a CramÉr-Rao bound based study. IEEE Trans Signal Process, 2008, 56: 218–232

    Article  MathSciNet  MATH  Google Scholar 

  337. Xu L Z, Li J, Stoica P. Target detection and parameter estimation for MIMO radar systems. IEEE Trans Aerosp Electron Syst, 2008, 44: 927–939

    Article  Google Scholar 

  338. Liu W, Wang Y, Liu J, et al. Adaptive detection without training data in colocated MIMO radar. IEEE Trans Aerosp Electron Syst, 2015, 51: 2469–2479

    Article  Google Scholar 

  339. Liu J, Li J. Robust detection in MIMO radar with steering vector mismatches. IEEE Trans Signal Process, 2019, 67: 5270–5280

    Article  MathSciNet  MATH  Google Scholar 

  340. Fortunati S, Sanguinetti L, Gini F, et al. Massive MIMO radar for target detection. IEEE Trans Signal Process, 2020, 68: 859–871

    Article  MathSciNet  MATH  Google Scholar 

  341. Lan L, Marino A, Aubry A, et al. GLRT-based adaptive target detection in FDA-MIMO radar. IEEE Trans Aerosp Electron Syst, 2021, 57: 597–613

    Article  Google Scholar 

  342. Hassanien A, Vorobyov S A. Phased-MIMO radar: a tradeoff between phased-array and MIMO radars. IEEE Trans Signal Process, 2010, 58: 3137–3151

    Article  MathSciNet  MATH  Google Scholar 

  343. Fuhrmann D R, Browning J P, Rangaswamy M. Signaling strategies for the hybrid MIMO phased-array radar. IEEE J Sel Top Signal Process, 2010, 4: 66–78

    Article  Google Scholar 

  344. Li H, Himed B. Transmit subaperturing for MIMO radars with co-located antennas. IEEE J Sel Top Signal Process, 2010, 4: 55–65

    Article  Google Scholar 

  345. Xu J, Dai X Z, Xia X G, et al. Optimizations of multisite radar system with MIMO radars for target detection. IEEE Trans Aerosp Electron Syst, 2011, 47: 2329–2343

    Article  Google Scholar 

  346. Chen P, Zheng L, Wang X, et al. Moving target detection using colocated MIMO radar on multiple distributed moving platforms. IEEE Trans Signal Process, 2017, 65: 4670–4683

    Article  MathSciNet  MATH  Google Scholar 

  347. Chao S, Chen B, Li C. Grid cell based detection strategy for MIMO radar with widely separated subarrays. Int J Electron Commun, 2012, 66: 741–751

    Article  Google Scholar 

  348. Wang P, Li H, Himed B. A parametric moving target detector for distributed MIMO radar in non-homogeneous environment. IEEE Trans Signal Process, 2013, 61: 2282–2294

    Article  Google Scholar 

  349. Li H, Wang Z, Liu J, et al. Moving target detection in distributed MIMO radar on moving platforms. IEEE J Sel Top Signal Process, 2015, 9: 1524–1535

    Article  Google Scholar 

  350. Zhang Z J, Liu J, Zhao Y, et al. False alarm rate of the GLRT-LQ detector in non-Gaussian and heterogeneous clutter. Aerospace Sci Tech, 2015, 47: 191–194

    Article  Google Scholar 

  351. Xu L, Li J. Iterative generalized-likelihood ratio test for MIMO radar. IEEE Trans Signal Process, 2007, 55: 2375–2385

    Article  MathSciNet  MATH  Google Scholar 

  352. Kong L, Cui G, Yang X, et al. Adaptive detector design of MIMO radar with unknown covariance matrix. J Syst Eng Electron, 2010, 21: 954–960

    Article  Google Scholar 

  353. Cui G, Kong L, Yang X. Multiple-input multiple-output radar detectors design in non-Gaussian clutter. IET Radar Sonar Navig, 2010, 4: 724–732

    Article  Google Scholar 

  354. Wang J, Jiang S, He J, et al. Adaptive subspace detector for multi-input multi-output radar in the presence of steering vector mismatch. IET Radar Sonar Navig, 2011, 5: 23–31

    Article  Google Scholar 

  355. Gerlach K, Steiner M, Lin F C. Detection of a spatially distributed target in white noise. IEEE Signal Process Lett, 1997, 4: 198–200

    Article  Google Scholar 

  356. Gini F, Bordoni F, Farina A. Multiple radar targets detection by exploiting induced amplitude modulation. IEEE Trans Signal Process, 2004, 52: 903–913

    Article  MathSciNet  MATH  Google Scholar 

  357. Carotenuto V, de Maio A, Orlando D, et al. Model order selection rules for covariance structure classification in radar. IEEE Trans Signal Process, 2017, 65: 5305–5317

    Article  MathSciNet  MATH  Google Scholar 

  358. Liu W, Wang L, Di Y, et al. Adaptive energy detector and its application for mismatched signal detection. J Radars, 2014, 4: 149–159

    Google Scholar 

  359. Muirhead R J. Aspects of Multivariate Statistical Theory. 2nd ed. Hoboken: Wiley, 2005

    MATH  Google Scholar 

  360. Anderson T W. An Introduction to Multivariate Statistical Analysis. 3rd ed. Hoboken: Wiley, 2003

    MATH  Google Scholar 

  361. Long T, Liang Z N, Liu Q H. Advanced technology of high-resolution radar: target detection, tracking, imaging, and recognition. Sci China Inf Sci, 2019, 62: 040301

    Article  Google Scholar 

  362. Liu W J, Li J J, Wang P X, et al. Wald tests for signal detection when uncertainty exists in a target’s spatial-temporal steering vector. Sci China Inf Sci, 2020, 63: 189304

    Article  MathSciNet  Google Scholar 

  363. Li Y, Song R, Wang W. Particle swarm optimization of compression measurement for signal detection. Circ Syst Signal Process, 2012, 31: 1109–1126

    Article  MathSciNet  MATH  Google Scholar 

  364. Wang Y G, Liu Z, Yang L, et al. Generalized compressive detection of stochastic signals using Neyman-Pearson theorem. Signal Image Video Process, 2015, 9: 111–120

    Article  Google Scholar 

  365. Razavi A, Valkama M, Cabric D. Compressive detection of random subspace signals. IEEE Trans Signal Process, 2016, 64: 4166–4179

    Article  MathSciNet  MATH  Google Scholar 

  366. Wimalajeewa T, Varshney P K. Sparse signal detection with compressive measurements via partial support set estimation. IEEE Trans Signal Inf Process over Networks, 2017, 3: 46–60

    Article  MathSciNet  Google Scholar 

  367. Wimalajeewa T, Varshney P K. Compressive sensing-based detection with multimodal dependent data. IEEE Trans Signal Process, 2018, 66: 627–640

    Article  MathSciNet  MATH  Google Scholar 

  368. Ma J, Gan L, Liao H, et al. Sparse signal detection without reconstruction based on compressive sensing. Signal Process, 2019, 162: 211–220

    Article  Google Scholar 

  369. Zhang X, Sward J, Li H, et al. A sparsity-based passive multistatic detector. IEEE Trans Aerosp Electron Syst, 2019, 55: 3658–3666

    Article  Google Scholar 

  370. Carotenuto V, Orlando D, Farina A. Interference covariance matrix structure classification in heterogeneous environment. IEEE Signal Process Lett, 2019, 26: 1491–1495

    Article  Google Scholar 

  371. Liu J, Biondi F, Orlando D, et al. Training data classification algorithms for radar applications. IEEE Signal Process Lett, 2019, 26: 1446–1450

    Article  Google Scholar 

  372. Coluccia A, Fascista A, Ricci G. CFAR feature plane: a novel framework for the analysis and design of radar detectors. IEEE Trans Signal Process, 2020, 68: 3903–3916

    Article  MathSciNet  MATH  Google Scholar 

  373. Coluccia A, Fascista A, Ricci G. A k-nearest neighbors approach to the design of radar detectors. Signal Process, 2020, 174: 107609

    Article  MATH  Google Scholar 

  374. Zaimbashi A, Li J. Tunable adaptive target detection with kernels in colocated MIMO radar. IEEE Trans Signal Process, 2020, 68: 1500–1514

    Article  MathSciNet  MATH  Google Scholar 

  375. Gerlach K. Spatially distributed target detection in non-Gaussian clutter. IEEE Trans Aerosp Electron Syst, 1999, 35: 926–934

    Article  Google Scholar 

  376. Gini F, Greco M. Covariance matrix estimation for CFAR detection in correlated heavy tailed clutter. Signal Process, 2002, 82: 1847–1859

    Article  MATH  Google Scholar 

  377. Sangston K J, Gini F, Greco M S. Coherent radar target detection in heavy-tailed compound-Gaussian clutter. IEEE Trans Aerosp Electron Syst, 2012, 48: 64–77

    Article  Google Scholar 

  378. Jian T, He Y, Su F, et al. Cascaded detector for range-spread target in non-Gaussian clutter. IEEE Trans Aerosp Electron Syst, 2012, 48: 1713–1725

    Article  Google Scholar 

  379. Chen X, Guan J, Bao Z, et al. Detection and extraction of target with micromotion in spiky sea clutter via short-time fractional fourier transform. IEEE Trans Geosci Remote Sens, 2014, 52: 1002–1018

    Article  Google Scholar 

  380. Xu S, Shi X, Xue J, et al. Adaptive subspace detection of range-spread target in compound Gaussian clutter with inverse Gaussian texture. Digital Signal Process, 2018, 81: 79–89

    Article  MathSciNet  Google Scholar 

  381. Yang Y, Xiao S, Wang X, et al. Performance analysis of radar detection for correlated Gamma fluctuating targets in K distributed sea clutter. Digital Signal Process, 2018, 79: 136–141

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Grant Nos. 62071482, 61871469), National Natural Science Foundation of China and Civil Aviation Administration of China (Grant No. U1733116), Youth Innovation Promotion Association CAS (Grant No. CX2100060053), National Key Research and Development Program of China (Grant No. 2018YFB1801105), and China Postdoctoral Science Foundation (Grant No. 2020T130493).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Liang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Liu, J., Hao, C. et al. Multichannel adaptive signal detection: basic theory and literature review. Sci. China Inf. Sci. 65, 121301 (2022). https://doi.org/10.1007/s11432-020-3211-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-3211-8

Keywords

Navigation