Skip to main content

Nonlinear output-feedback tracking in multiagent systems with an unknown leader and directed communication

Abstract

This paper addresses cooperative global robust output regulation for heterogeneous and uncertain multiagent nonlinear systems in the output-feedback normal form. Specifically, we develop a Lyapunov-based dynamic output-feedback law using a nonlinear internal model approach. We show that an effective control law can be constructed under general (static) directed communication topologies even when the leader is unknown. Hence, the present study offers a more general investigation of the problem in comparison with the developments in the recent literature.

This is a preview of subscription content, access via your institution.

References

  1. Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans Automat Contr, 2003, 48: 988–1001

    MathSciNet  MATH  Google Scholar 

  2. Hong Y G, Chen G R, Bushnell L. Distributed observers design for leader-following control of multi-agent networks. Automatica, 2008, 44: 846–850

    MathSciNet  MATH  Google Scholar 

  3. Cao Y C, Ren W. Distributed coordinated tracking with reduced interaction via a variable structure approach. IEEE Trans Automat Contr, 2012, 57: 33–48

    MathSciNet  MATH  Google Scholar 

  4. Yang T, Saberi A, Stoorvogel A A, et al. Output synchronization for heterogeneous networks of introspective right-invertible agents. Int J Robust Nonlin Control, 2014, 24: 1821–1844

    MathSciNet  MATH  Google Scholar 

  5. Shi L R, Zhao Z Y, Lin Z L. Robust semi-global leader-following practical consensus of a group of linear systems with imperfect actuators. Sci China Inf Sci, 2017, 60: 072201

    MathSciNet  Google Scholar 

  6. Liu T, Huang J. An output-based distributed observer and its application to the cooperative linear output regulation problem. Control Theor Technol, 2019, 17: 62–72

    MathSciNet  MATH  Google Scholar 

  7. Zhang Y, Su Y F. Cooperative output regulation for linear uncertain MIMO multi-agent systems by output feedback. Sci China Inf Sci, 2018, 61: 092206

    MathSciNet  Google Scholar 

  8. Su Y F, Huang J. Cooperative semi-global robust output regulation for a class of nonlinear uncertain multi-agent systems. Automatica, 2014, 50: 1053–1065

    MathSciNet  MATH  Google Scholar 

  9. Dong Y, Huang J. Cooperative global output regulation for a class of nonlinear multi-agent systems. IEEE Trans Automat Contr, 2014, 59: 1348–1354

    MathSciNet  MATH  Google Scholar 

  10. Liu W, Huang J. Adaptive leader-following rendezvous and flocking for a class of uncertain second-order nonlinear multi-agent systems. Control Theor Technol, 2017, 15: 354–363

    MathSciNet  Google Scholar 

  11. Wang F Y, Liu Z X, Chen Z Q. Leader-following consensus of second-order nonlinear multi-agent systems with intermittent position measurements. Sci China Inf Sci, 2019, 62: 202204

    MathSciNet  Google Scholar 

  12. Xiao W B, Cao L, Li H Y, et al. Observer-based adaptive consensus control for nonlinear multi-agent systems with time-delay. Sci China Inf Sci, 2020, 63: 132202

    MathSciNet  Google Scholar 

  13. Liu T F, Jiang Z P. Distributed output-feedback control of nonlinear multi-agent systems. IEEE Trans Automat Contr, 2013, 58: 2912–2917

    MathSciNet  MATH  Google Scholar 

  14. Wang X L, Hong Y G, Huang J, et al. A distributed control approach to a robust output regulation problem for multi-agent linear systems. IEEE Trans Automat Contr, 2010, 55: 2891–2895

    MathSciNet  MATH  Google Scholar 

  15. Su Y F, Huang J. Cooperative output regulation of linear multi-agent systems. IEEE Trans Automat Contr, 2012, 57: 1062–1066

    MathSciNet  MATH  Google Scholar 

  16. Isidori A, Marconi L, Casadei G. Robust output synchronization of a network of heterogeneous nonlinear agents via nonlinear regulation theory. IEEE Trans Automat Contr, 2014, 59: 2680–2691

    MathSciNet  MATH  Google Scholar 

  17. Lu M B, Huang J. Cooperative global robust output regulation for a class of nonlinear multi-agent systems with a nonlinear leader. IEEE Trans Automat Contr, 2016, 61: 3557–3562

    MathSciNet  MATH  Google Scholar 

  18. Su Y F, Huang J. Cooperative adaptive output regulation for a class of nonlinear uncertain multi-agent systems with unknown leader. Syst Control Lett, 2013, 62: 461–467

    MathSciNet  MATH  Google Scholar 

  19. Ding Z T, Li Z K. Distributed adaptive consensus control of nonlinear output-feedback systems on directed graphs. Automatica, 2016, 72: 46–52

    MathSciNet  MATH  Google Scholar 

  20. Wang X H, Su Y F, Xu D B. A nonlinear internal model design for heterogeneous second-order multi-agent systems with unknown leader. Automatica, 2018, 91: 27–35

    MathSciNet  MATH  Google Scholar 

  21. Sontag E D. Input to state stability: basic concepts and results. In: Nonlinear and Optimal Control Theory. Berlin: Springer, 2007. 163–220

    Google Scholar 

  22. Jiang Z P, Mareels I, Hill D J, et al. A unifying framework for global regulation via nonlinear output feedback: from ISS to iISS. IEEE Trans Automat Contr, 2004, 49: 549–562

    MathSciNet  MATH  Google Scholar 

  23. Xu D B, Wang X H, Chen Z Y. Output regulation of nonlinear output feedback systems with exponential parameter convergence. Syst Control Lett, 2016, 88: 81–90

    MathSciNet  MATH  Google Scholar 

  24. Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and Adaptive Control Design. New York: Wiley, 1995

    MATH  Google Scholar 

  25. Marino R, Tomei P. Global adaptive output-feedback control of nonlinear systems. I. Linear parameterization. IEEE Trans Automat Contr, 1993, 38: 17–32

    MathSciNet  MATH  Google Scholar 

  26. Marino R, Tomei P. Nonlinear Control Design: Geometric, Adaptive and Robust. London: Prentice Hall, 1995

    MATH  Google Scholar 

  27. Besançon G. Global output feedback tracking control for a class of Lagrangian systems. Automatica, 2000, 36: 1915–1921

    MathSciNet  MATH  Google Scholar 

  28. Godsil C, Royle G. Algebraic Graph Theory. New York: Springer-Verlag, 2001

    MATH  Google Scholar 

  29. Berman A, Plemmons R J. Nonnegative Matrices in the Mathematical Sciences. New York: Academic Press Inc., 1979

    MATH  Google Scholar 

  30. Huang J. Remarks on robust output regulation problem for nonlinear systems. IEEE Trans Autom Control, 2001, 46: 2028–2031

    MathSciNet  MATH  Google Scholar 

  31. Jiang Z P. Global output feedback control with disturbance attenuation for minimum-phase nonlinear systems. Syst Control Lett, 2000, 39: 155–164

    MathSciNet  MATH  Google Scholar 

  32. Huang J. Nonlinear Output Regulation: Theory and Applications. Philadelphia: SIAM, 2004

    MATH  Google Scholar 

  33. Byrnes C I, Priscoli F D, Isidori A. Output Regulation of Uncertain Nonlinear Systems. New York: Springer Science & Business Media, 1997

    MATH  Google Scholar 

  34. Xu D B. Constructive nonlinear internal models for global robust output regulation and application. IEEE Trans Automat Contr, 2018, 63: 1523–1530

    MathSciNet  MATH  Google Scholar 

  35. Wang X H, Xu D B, Ji H B. Robust almost output consensus in networks of nonlinear agents with external disturbances. Automatica, 2016, 70: 303–311

    MathSciNet  MATH  Google Scholar 

  36. Khalil H K. Nonlinear Systems. 3rd ed. Upper Saddle River: Prentice Hall, 2002

    MATH  Google Scholar 

  37. Wu Y Q, Yu J B, Zhao Y. Further results on global asymptotic regulation control for a class of nonlinear systems with iISS inverse dynamics. IEEE Trans Automat Contr, 2011, 56: 941–946

    MathSciNet  MATH  Google Scholar 

  38. Wang X H, Su Y F, Xu D B. Cooperative robust output regulation of linear uncertain multiple multivariable systems with performance constraint. Automatica, 2018, 95: 137–145

    MathSciNet  MATH  Google Scholar 

  39. Francis B A, Wonham W M. The internal model principle of control theory. Automatica, 1976, 12: 457–465

    MathSciNet  MATH  Google Scholar 

  40. Hong J, Bernstein D S. Adaptive stabilization of non-linear oscillators using direct adaptive control. Int J Control, 2001, 74: 432–444

    MathSciNet  MATH  Google Scholar 

  41. Li W Q, Yao X X, Krstic M. Adaptive-gain observer-based stabilization of stochastic strict-feedback systems with sensor uncertainty. Automatica, 2020, 120: 109112

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Grant Nos. 61673216, 61773122, 61873250, 62073168) and USTC Research Funds of the Double First-Class Initiative (Grand No. YD2100002002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dabo Xu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Su, Y. & Xu, D. Nonlinear output-feedback tracking in multiagent systems with an unknown leader and directed communication. Sci. China Inf. Sci. 64, 222202 (2021). https://doi.org/10.1007/s11432-020-3108-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-3108-6

Keywords

  • multiagent systems
  • internal model
  • unknown leaders
  • output regulation
  • output-feedback