Skip to main content

Interactive multiobjective evolutionary algorithm based on decomposition and compression

Abstract

Many real-world optimization problems involve multiple conflicting objectives. Such problems are called multiobjective optimization problems (MOPs). Typically, MOPs have a set of so-called Pareto optimal solutions rather than one unique optimal solution. To assist the decision maker (DM) in finding his/her most preferred solution, we propose an interactive multiobjective evolutionary algorithm (MOEA) called iDMOEA-εC, which utilizes the DM’s preferences to compress the objective space directly and progressively for identifying the DM’s preferred region. The proposed algorithm employs a state-of-the-art decomposition-based MOEA called DMOEA-εC as the search engine to search for solutions. DMOEA-εC decomposes an MOP into a series of scalar constrained subproblems using a set of evenly distributed upper bound vectors to approximate the entire Pareto front. To guide the population toward only the DM’s preferred part on the Pareto front, an adaptive adjustment mechanism of the upper bound vectors and two-level feasibility rules are proposed and integrated into DMOEA-εC to control the spread of the population. To ease the DM’s burden, only a small set of representative solutions is presented in each interaction to the DM, who is expected to specify a preferred one from the set. Furthermore, the proposed algorithm includes a two-stage selection procedure, allowing to elicit the DM’s preferences as accurately as possible. To evaluate the performance of the proposed algorithm, it was compared with other interactive MOEAs in a series of experiments. The experimental results demonstrated the superiority of iDMOEA-εC over its competitors.

This is a preview of subscription content, access via your institution.

References

  1. Wang Y Y, Jiao X H. Multi-objective energy management for PHEV using Pontryagin’s minimum principle and particle swarm optimization online. Sci China Inf Sci, 2021, 64: 119204

    Article  Google Scholar 

  2. Gao G Q, Xin B. A-STC: auction-based spanning tree coverage algorithm formotion planning of cooperative robots. Front Inf Technol Electron Eng, 2019, 20: 18–31

    Article  Google Scholar 

  3. Radmanesh M, Kumar M, Guentert P H, et al. Overview of path-planning and obstacle avoidance algorithms for UAVs: a comparative study. Unmanned Syst, 2018, 6: 95–118

    Article  Google Scholar 

  4. Hafez A T, Kamel M A. Cooperative task assignment and trajectory planning of unmanned systems via HFLC and PSO. Unmanned Syst, 2019, 7: 65–81

    Article  Google Scholar 

  5. Xue Y, Zhang J, Gao X Q. Resource allocation for pilot-assisted massive MIMO transmission. Sci China Inf Sci, 2017, 60: 042302

    Article  Google Scholar 

  6. Zhou H, Yu W, Yi P, et al. Quantized gradient-descent algorithm for distributed resource allocation. Unmanned Syst, 2019, 7: 119–136

    Article  Google Scholar 

  7. Wang K H, Xiong Z H, Chen L, et al. Joint time delay and energy optimization with intelligent overclocking in edge computing. Sci China Inf Sci, 2020, 63: 140313

    MathSciNet  Article  Google Scholar 

  8. Li B, Li J, Tang K, et al. Many-objective evolutionary algorithms. ACM Comput Surv, 2015, 48: 1–35

    Article  Google Scholar 

  9. von Lücken C, Barán B, Brizuela C. A survey on multi-objective evolutionary algorithms for many-objective problems. Comput Opt Appl, 2014, 25: 707–756

    MathSciNet  MATH  Google Scholar 

  10. Xin B, Chen L, Chen J, et al. Interactive multiobjective optimization: a review of the state-of-the-art. IEEE Access, 2018, 6: 41256–41279

    Article  Google Scholar 

  11. Deb K, Sinha A, Korhonen P J, et al. An interactive evolutionary multiobjective optimization method based on progressively approximated value functions. IEEE Trans Evol Computat, 2010, 14: 723–739

    Article  Google Scholar 

  12. Gong M, Liu F, Zhang W, et al. Interactive MOEA/D for multi-objective decision making. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, 2011. 721–728

  13. Chen J, Li J, Xin B. DMOEA-εC: decomposition-based multiobjective evolutionary algorithm with the ε-constraint framework. IEEE Trans Evol Comput, 2017, 21: 714–730

    Google Scholar 

  14. Zhou H, Qiao J. Multiobjective optimal control for wastewater treatment process using adaptive MOEA/D. Appl Intell, 2019, 49: 1098–1126

    Article  Google Scholar 

  15. Qiao J, Zhou H, Yang C, et al. A decomposition-based multiobjective evolutionary algorithm with angle-based adaptive penalty. Appl Soft Comput, 2019, 74: 190–205

    Article  Google Scholar 

  16. Koksalan M, Karahan I. An interactive territory defining evolutionary algorithm: iTDEA. IEEE Trans Evol Comput, 2010, 14: 702–722

    Article  Google Scholar 

  17. Sinha A, Korhonen P, Wallenius J, et al. An interactive evolutionary multi-objective optimization method based on polyhedral cones. In: Proceedings of International Conference on Learning and Intelligent Optimization. Berlin: Springer, 2010. 318–332

    Google Scholar 

  18. Haimes Y Y, Lasdon L S, Wismer D A. On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans Syst Man Cybern, 1971, 1: 296–297

    MathSciNet  MATH  Google Scholar 

  19. Miettinen K. Nonlinear Multiobjective Optimization. Boston: Kluwer Academic Publishers, 1999

    MATH  Google Scholar 

  20. Zhang Q, Liu W, Li H. The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: Proceedings of the IEEE Congress on Evolutionary Computation, 2009. 203–208

  21. Deb K. An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng, 2000, 186: 311–338

    Article  Google Scholar 

  22. Jain A K, Murty M N, Flynn P J. Data clustering. ACM Comput Surv, 1999, 31: 264–323

    Article  Google Scholar 

  23. Chankong V, Haimes Y Y. Multiobjective Decision Making: Theory and Methodology. Amsterdam: Elsevier Science Publishing, 1983

    MATH  Google Scholar 

  24. Galperin E A, Wiecek M. Retrieval and use of the balance set in multiobjective global optimization. Comput Math Appl, 1999, 37: 111–123

    MathSciNet  Article  Google Scholar 

  25. Miettinen K, Mäkelä M M, Kaario K. Experiments with classification-based scalarizing functions in interactive multiobjective optimization. Eur J Oper Res, 2006, 175: 931–947

    Article  Google Scholar 

  26. Narula S C, Weistroffer H R. A flexible method for nonlinear multicriteria decision-making problems. IEEE Trans Syst Man Cybern, 1989, 19: 883–887

    Article  Google Scholar 

  27. Miettinen K, Mäkelä M M. Interactive method NIMBUS for nondifferentiable multiobjective optimization problems. In: Multicriteria Analysis. Berlin: Springer, 1997. 310–319

    Chapter  Google Scholar 

  28. Miettinen K, Lotov A V, Kamenev G K, et al. Integration of two multiobjective optimization methods for nonlinear problems. Opt Methods Softw, 2003, 18: 63–80

    MathSciNet  Article  Google Scholar 

  29. Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: empirical results. Evolary Comput, 2000, 8: 173–195

    Article  Google Scholar 

  30. Miettinen K, Mäkelä M M. Interactive bundle-based method for nondifferentiable multiobjeective optimization: NIMBUS. Optimization, 1995, 34: 231–246

    MathSciNet  Article  Google Scholar 

  31. Deb K, Thiele L, Laumanns M, et al. Scalable test problems for evolutionary multiobjective optimization. In: Evolutionary Multiobjective Optimization. Berlin: Springer, 2005. 105–145

    Chapter  Google Scholar 

  32. Zhang Q, Zhou A, Zhao S, et al. Multiobjective Optimization Test Instances for the CEC 2009 Special Session and Competition. Technical Report CES-487, 2009

  33. Huband S, Barone L, While L, et al. A scalable multi-objective test problem toolkit. In: Proceedings of the 3rd International Conference on Evolutionary Multi-Criterion Optimization, 2005. 280–295

  34. Xin B, Li H, Wang L. ICB-MOEA/D: an interactive classification-based multi-objective optimization algorithm. In: Proceedings of the 37th Chinese Control Conference, 2018. 2500–2505

  35. Chugh T, Sindhya K, Hakanen J, et al. An interactive simple indicator-based evolutionary algorithm (I-SIBEA) for multiobjective optimization problems. In: Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization. Berlin: Springer, 2015. 277–291

    Google Scholar 

  36. Li K, Deb K, Zhang Q, et al. An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans Evol Comput, 2015, 19: 694–716

    Article  Google Scholar 

  37. Li J, Xin B. An improved version of DMOEA-εC for many-objective optimization problems: iDMOEA-εC. In: Proceedings of the 38th Chinese Control Conference, 2019. 2212–2217

Download references

Acknowledgements

This work was supported in part by National Outstanding Youth Talents Support Program (Grant No. 61822304), National Natural Science Foundation of China (Grant No. 61673058), NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization (Grant No. U1609214), Consulting Research Project of the Chinese Academy of Engineering (Grant No. 2019-XZ-7), Projects of Major International (Regional) Joint Research Program of NSFC (Grant No. 61720106011), Peng Cheng Laboratory, and Beijing Advanced Innovation Center for Intelligent Robots and Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Xin.

Supplementary File

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Xin, B. & Chen, J. Interactive multiobjective evolutionary algorithm based on decomposition and compression. Sci. China Inf. Sci. 64, 202201 (2021). https://doi.org/10.1007/s11432-020-3092-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-3092-y

Keywords

  • multiobjective optimization
  • interactive decision making
  • preference incorporation
  • decomposition
  • compression