Abstract
Owing to their high sensitivity and low noise, superconducting detectors are used for photon detection from microwave to high-energy particles. X-ray detection plays an important role in materials analysis, astronomy, and medical radiography, which require high efficiency as well as high energy resolution. However, traditional semiconducting detectors cannot fulfill these requirements. In this article, we review superconducting quantum detectors for X-ray detection, including transition-edge sensor (TES), superconducting tunneling junctions (STJs), kinetic inductance detectors (KIDs) and superconducting nanowire single-photon detectors (SNSPDs), and introduce the physical structures, working mechanisms, and device behaviors of these detectors. We also review their performances regarding X-ray detection and analyze their respective characteristics. According to recent progress and the requirements of various applications, possible improvement of superconducting detectors for X-rays are discussed.
This is a preview of subscription content, access via your institution.
References
Hasegawa B H. The Physics of Medical X-ray Imaging, Or, the Photon and Me-How I Saw the Light. 2nd ed. Madison: Medical Physics, 1991
Jenkins R, Snyder R L. Introduction to X-ray Powder Diffractometry. New York: Wiley, 1996
Wang Q, Chen Z, Wu X, et al. Review of X-ray security inspection technology. Compu Tomograph Theory Appl, 2004, 1: 8
Fraser G. X-ray Detectors in Astronomy. Cambridge and New York: Cambridge University Press, 1989. 312
Cnudde V, Boone M N. High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth-Sci Rev, 2013, 123: 1–17
Jenkins R. X-ray Fluorescence Spectrometry. New York: Wiley, 1999
Gatti E, Rehak P. Semiconductor drift chamber - an application of a novel charge transport scheme. Nucl Instruments Methods Phys Res, 1984, 225: 608–614
Lechner P, Fiorini C, Hartmann R, et al. Silicon drift detectors for high count rate X-ray spectroscopy at room temperature. Nucl Instruments Methods Phys Res Sect A-Accelerators Spectrometers Detectors Associated Equipment, 2001, 458: 281–287
Lechner P, Eckbauer S, Hartmann R, et al. Silicon drift detectors for high resolution room temperature X-ray spectroscopy. Nucl Instruments Methods Phys Res Sect A-Accelerators Spectrometers Detectors Associated Equipment, 1996, 377: 346–351
Yakunin S, Sytnyk M, Kriegner D, et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat Photon, 2015, 9: 444–449
Tinkham M. Introduction to Superconductivity. 2nd ed. New York: McGraw-Hill, 1996
Schrieffer J R. Theory of Superconductivity. Boca Raton: CRC Press, 2018
Matthias B T, Geballe T H, Compton V B. Superconductivity. Rev Modern Phys, 1963, 35: 1
Anlage S M. The physics and applications of superconducting metamaterials. J Opt, 2010, 13: 024001
Tomita M, Murakami M. High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29K. Nature, 2003, 421: 517–520
Braunisch W, Knauf N, Kataev V, et al. Paramagnetic Meissner effect in Bi high-temperature superconductors. Phys Rev Lett, 1992, 68: 1908
Orlando T P, Delin K A. Foundations of Applied Superconductivity. Reading: Addison-Wesley, 1991
Semenov A, Engel A, Ilin K, et al. Ultimate performance of a superconducting quantum detector. Eur Phys J Appl Phy, 2003, 21: 171–178
Bardeen J, Cooper L N, Schrieffer J R. Theory of superconductivity. Phys Rev, 1957, 108: 1175–1204
Irwin K D, Hilton G C. Transition-edge sensors. In: Cryogenic Particle Detection. Berlin: Springer, 2005. 63–150
Aschermann G, Friederich E, Justi E, et al. Supraleitfähige Verbindungen mit extrem hohen Sprungtemperaturen (NbH und NbN). In: Technischwissenschaftliche Abhandlungen der Osram-Gesellschaft. Berlin: Springer, 1943. 401–416
Andrews D, Brucksch J W, Ziegler W, et al. Superconducting films as radiometric receivers. Phys Rev, 1941, 59: 1045
Pippard A. Field variation of the superconducting penetration depth. Proc Royal Society London Ser A Math Phys Sci, 1950, 203: 210–223
Suhl H, Matthias B T, Walker L R. Bardeen-Cooper-Schrieffer theory of superconductivity in the case of overlapping bands. Phys Rev Lett, 1959, 3: 552–554
Gor’kov L P. Microscopic derivation of the Ginzburg-Landau equations in the theory of superconductivity. Sov Phys JETP, 1959, 9: 1364–1367
Ginzburg V, Landau L. Zh. Eksper. Teor. Fiz. Oxford: Pergamon Press, 1950, 20: 1064–1082
Day P K, LeDuc H G, Mazin B A, et al. A broadband superconducting detector suitable for use in large arrays. Nature, 2003, 425: 817–821
Zmuidzinas J. Superconducting microresonators: physics and applications. Annu Rev Condens Matter Phys, 2012, 3: 169–214
Samedov V V. Influence of the proximity effect on the energy resolution of STJs. Nucl Instruments Methods Phys Res Sect A-Accelerators Spectrometers Detectors Associated Equipment, 2004, 520: 257–259
Wang Z, Kawakami A, Uzawa Y. NbN/AlN/NbN tunnel junctions with high current density up to 54 kA/cm2. Appl Phys Lett, 1997, 70: 114–116
Mazin B A, Bumble B, Meeker S R, et al. A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics. Opt Express, 2012, 20: 1503–1511
Wollman D A, Irwin K D, Hilton G C, et al. High-resolution, energy-dispersive microcalorimeter spectrometer for X-ray microanalysis. J Microsc, 1997, 188: 196–223
Irwin K D, Hilton G C, Wollman D A, et al. X-ray detection using a superconducting transition-edge sensor microcalorimeter with electrothermal feedback. Applied Phys Lett, 1996, 69: 1945–1947
Kurakado M. Review on superconducting tunnel junctions as ionizing-radiation detectors. In: Superconducting Devices and Their Applications. Berlin: Springer, 1992. 466–473
Mazin B A. Microwave kinetic inductance detectors. Dissertation for Ph.D. Degree. California: California Institute of Technology, 2005
Gol’tsman G N, Okunev O, Chulkova G, et al. Picosecond superconducting single-photon optical detector. Appl Phys Lett, 2001, 79: 705–707
Irwin K D, Niemack M D, Beyer J, et al. Code-division multiplexing of superconducting transition-edge sensor arrays. Supercond Sci Technol, 2010, 23: 034004
Irimatsugawa T, Hatakeyama S, Ohno M, et al. High energy gamma-ray spectroscopy using transition-edge sensor with a superconducting bulk tantalum absorber. IEEE Trans Appl Superconduct, 2014, 25: 1–3
Ullom J N, Bennett D A. Review of superconducting transition-edge sensors for x-ray and gamma-ray spectroscopy. Supercond Sci Technol, 2015, 28: 084003
Friedrich S, Harris J, Warburton W K, et al. 112-pixel arrays of high-efficiency STJ X-ray detectors. J Low Temp Phys, 2014, 176: 553–559
Andrianov V. Comment on “Observation of nuclear gamma resonance with superconducting tunnel junction detectors” [AIP Advances 6, 025315 (2016)]. AIP Adv, 2019, 9: 059101
Ulbricht G, Mazin B A, Szypryt P, et al. Highly multiplexible thermal kinetic inductance detectors for x-ray imaging spectroscopy. Appl Phys Lett, 2015, 106: 251103
Faverzani M, Cruciani A, D’Addabbo A, et al. Thermal kinetic inductance detectors for soft X-ray spectroscopy. Nucl Instruments Methods Phys Res Sect A-Accelerators Spectrometers Detectors Associated Equipment, 2019, 936: 197–198
Zhang X, Wang Q, Schilling A. Superconducting single X-ray photon detector based on W0.8Si0.2. AIP Adv, 2016, 6: 115104
Inderbitzin K, Engel A, Schilling A, et al. An ultra-fast superconducting Nb nanowire single-photon detector for soft X-rays. Appl Phys Lett, 2012, 101: 162601
Mates J A B. The microwave SQUID multiplexer. Dissertation for Ph.D. Degree. Colorado: University of Colorado, 2011
Chester G V, Thellung A. The law of Wiedemann and Franz. Proc Phys Soc, 1961, 77: 1005–1013
Lindeman M A, Bandler S, Brekosky R P, et al. Impedance measurements and modeling of a transition-edge-sensor calorimeter. Rev Sci Instruments, 2004, 75: 1283–1289
Lindeman M A. Microcalorimetry and the transition-edge sensor. Dissertation for Ph.D. Degree. Livermore: Lawrence Livermore National Lab., 2000
Irwin K D. Phonon-mediated particle detection using superconducting tungsten transition-edge sensors. Dissertation for Ph.D. Degree. Batavia: Fermi National Accelerator Lab., 1995
Irwin K D, Hilton G C, Wollman D A, et al. Thermal-response time of superconducting transition-edge microcalorimeters. J Appl Phys, 1998, 83: 3978–3985
Mandl F. Statistical Physics. 2nd ed. Trowbridge: John Wiley & Sons, 1988
Giachero A, Cruciani A, D’Addabbo A, et al. Development of thermal kinetic inductance detectors suitable for X-ray spectroscopy. J Low Temp Phys, 2018, 193: 163–169
Mazin B A, Bumble B, Day P K, et al. Position sensitive X-ray spectrophotometer using microwave kinetic inductance detectors. Appl Phys Lett, 2006, 89: 222507
Verhoeve P, Martin D, Venn R. Imaging soft X-ray spectrometers based on superconducting tunnel junctions. In: Proceedings of SPIE, 2010. 7742
Semenov A D, Gol tsman G N, Sobolewski R. Hot-electron effect in superconductors and its applications for radiation sensors. Supercond Sci Technol, 2002, 15: R1–R16
Koch H, Lübbig H. Superconducting devices and their applications: In: Proceedings of the 4th International Conference SQUID’91 (Sessions on Superconducting Devices), Berlin, 1991
Hays-Wehle J P, Lowell P J, Schmidt D R, et al. An overhanging absorber for TES X-ray focal planes. IEEE Trans Appl Superconduct, 2017, 27: 1–4
Lee S J, Adams J S, Bandler S R, et al. Fine pitch transition-edge sensor X-ray microcalorimeters with sub-eV energy resolution at 1.5 keV. Appl Phys Lett, 2015, 107: 223503
Gaidis M. Superconducting tunnel junctions as single photon X-ray detectors. Dissertation for Ph.D. Degree. New Haven: Yale University, 1994
Sellers G J, Anderson A C, Birnbaum H K. Anomalous heat capacities of niobium and tantalum below 1 K. Phys Rev B, 1974, 10: 2771–2776
O’Neal H R, Phillips N E. Low-temperature heat capacities of indium and tin. Phys Rev, 1965, 137: A748–A759
Smith S J, Adams J S, Bandler S R, et al. Multiabsorber transition-edge sensors for x-ray astronomy. J Astron Telesc Instrum Syst, 2019, 5: 021008
Maul M K, Strandberg M W P, Kyhl R L. Excess noise in superconducting bolometers. Phys Rev, 1969, 182: 522–525
Neuhauser B, Cabrera B, Martoff C J, et al. Phonon-mediated detection of Alpha particles with aluminum transition edge sensors. Jpn J Appl Phys, 1987, 26: 1671
Clarke J, Braginski A I. The SQUID Handbook. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2004
Irwin K D, Nam S W, Cabrera B, et al. A self-biasing cryogenic particle detector utilizing electrothermal feedback and a SQUID readout. IEEE Trans Appl Supercond, 1995, 5: 2690–2693
Irwin K. An application of electrothermal feedback for high resolution cryogenic particle detection. Appl Phys Lett, 1995, 66: 1998–2000
Chervenak J A, Irwin K D, Grossman E N, et al. Superconducting multiplexer for arrays of transition edge sensors. Appl Phys Lett, 1999, 74: 4043–4045
Chervenak J A, Grossman E N, Irwin K D, et al. Performance of multiplexed SQUID readout for cryogenic sensor arrays. Nucl Instruments Methods Phys Res Sect A-Accelerators Spectrometers Detectors Associated Equipment, 2000, 444: 107–110
Benford D, Allen C, Chervenak J, et al. Multiplexed readout of superconducting bolometers. Int J Infrared Millimeter Waves, 2000, 21: 1909–1916
Doriese W B, Ullom J N, Beall J A, et al. 14-pixel, multiplexed array of gamma-ray microcalorimeters with 47 eV energy resolution at 103 keV. Appl Phys Lett, 2007, 90: 193508
Woodcraft A L, Ade P A R, Bintley D, et al. Electrical and optical measurements on the first SCUBA-2 prototype 1280 pixel submillimeter superconducting bolometer array. Rev Sci Instruments, 2007, 78: 024502
de Korte P A J, Beyer J, Deiker S, et al. Time-division superconducting quantum interference device multiplexer for transition-edge sensors. Rev Sci Instruments, 2003, 74: 3807–3815
Cunningham M, Ullom J, Miyazaki T, et al. High-resolution operation of frequency-multiplexed transition-edge photon sensors. Appl Phys Lett, 2002, 81: 159–161
Yoon J, Clarke J, Gildemeister J M, et al. Single superconducting quantum interference device multiplexer for arrays of low-temperature sensors. Appl Phys Lett, 2001, 78: 371–373
Oxley P, Ade P A, Baccigalupi C, et al. The EBEX experiment. In: Proceedings of SPIE, 2004. 5543: 320–331
Ruhl J, Ade P A, Carlstrom J E, et al. The south pole telescope. In: Proceedings of SPIE, 2004. 5498: 11–29
Dobbs M, Halverson N W, Ade P A R, et al. APEX-SZ first light and instrument status. New Astron Rev, 2006, 50: 960–968
Niemack M D, Beyer J, Cho H M, et al. Code-division SQUID multiplexing. Appl Phys Lett, 2010, 96: 163509
Bennett D A, Mates J A, Gard J D, et al. Integration of TES microcalorimeters with microwave SQUID multiplexed readout. IEEE Trans Appl Superconduct, 2014, 25: 1–5
Irwin K D, Lehnert K W. Microwave SQUID multiplexer. Appl Phys Lett, 2004, 85: 2107–2109
Mates J A B, Becker D T, Bennett D A, et al. Simultaneous readout of 128 X-ray and gamma-ray transition-edge microcalorimeters using microwave SQUID multiplexing. Appl Phys Lett, 2017, 111: 062601
Stanchfield S M, Ade P A R, Aguirre J, et al. Development of a microwave SQUID-multiplexed TES array for MUSTANG-2. J Low Temp Phys, 2016, 184: 460–465
Smith S J, Adams J S, Bailey C N, et al. Small pitch transition-edge sensors with broadband high spectral resolution for solar physics. J Low Temp Phys, 2012, 167: 168–175
Eckart M, Adams J, Bandler S, et al. Large-absorber TES X-ray microcalorimeters and the micro-X detector array. In: AIP Conference Proceedings, 2009. 1185: 699–702
Morgan K M, Pappas C G, Bennett D A, et al. Dependence of transition width on current and critical current in transition-edge sensors. Appl Phys Lett, 2017, 110: 212602
Hays-Wehle J P, Schmidt D R, Ullom J N, et al. Thermal conductance engineering for high-speed TES microcalorimeters. J Low Temp Phys, 2016, 184: 492–497
Wollman D A, Nam S W, Newbury D E, et al. Superconducting transition-edge-microcalorimeter X-ray spectrometer with 2 eV energy resolution at 1.5 keV. Nucl Instruments Methods Phys Res Sect A-Accelerators Spectrometers Detectors Associated Equipment, 2000, 444: 145–150
Wood G H, White B L. Pulses induced in tunneling currents between superconductors by alpha-particle bombardment. Appl Phys Lett, 1969, 15: 237–239
Peacock A, Verhoeve P, Rando N, et al. Single optical photon detection with a superconducting tunnel junction. Nature, 1996, 381: 135–137
Kozin M G, Romashkina I L, Sergeev S A, et al. STJ X-ray detectors with titanium sublayer. Nucl Instruments Methods Phys Res Sect A-Accelerators Spectrometers Detectors Associated Equipment, 2004, 520: 250–253
Twerenbold D. Nonequilibrium model of the superconducting tunneling junction X-ray detector. Phys Rev B, 1986, 34: 7748–7759
Gray K E. A superconducting transistor. Appl Phys Lett, 1978, 32: 392–395
Lerch P, Zehnder A. Quantum Giaever detectors: STJ’s. In: Cryogenic Particle Detection. Berlin: Springer, 2005. 217–266
Angloher G, Hettl P, Huber M, et al. Energy resolution of 12 eV at 5.9 keV from Al-superconducting tunnel junction detectors. J Appl Phys, 2001, 89: 1425–1429
Ukibe M, Fujii G, Shiki S, et al. Modification of layer structures of superconducting tunnel junctions to improve X-ray energy resolution. J Low Temp Phys, 2016, 184: 200–205
Doyle S, Naylon J, Cox J, et al. Kinetic inductance detectors for 200 µm astronomy. In: Proceedings of SPIE, 2006. 6275: 62751O
Doyle S, Mauskopf P, Naylon J, et al. Lumped element kinetic inductance detectors. J Low Temp Phys, 2008, 151: 530–536
Yang C, Niu R R, Guo Z S, et al. Lumped element kinetic inductance detectors based on two-gap MgB2 thin films. Appl Phys Lett, 2018, 112: 022601
Nam S B. Theory of electromagnetic properties of superconducting and normal systems. I. Phys Rev, 1967, 156: 470–486
Day P K, Leduc H G, Goldin A, et al. Antenna-coupled microwave kinetic inductance detectors. Nucl Instruments Methods Phys Res Sect A-Accelerators Spectrometers Detectors Associated Equipment, 2006, 559: 561–563
Doyle S, Mauskopf P, Naylon J, et al. Lumped element kinetic inductance detectors. J Low Temp Phys, 2008, 151: 530–536
Rösch M. Development of Lumped Element Kinetic Inductance Detectors for mm-wave Astronomy at the IRAM 30 m Telescope. Karlsruhe: KIT Scientific Publishing, 2014
Bueno J, Murugesan V, Karatsu K, et al. Ultrasensitive kilo-pixel imaging array of photon noise-limited kinetic inductance detectors over an octave of bandwidth for THz astronomy. J Low Temp Phys, 2018, 193: 96–102
Zobrist N, Daal M, Corbin J Y, et al. Disk resonator design for kinetic inductance detectors. J Low Temp Phys, 2019, 194: 394–403
O’Connell A D, Ansmann M, Bialczak R C, et al. Microwave dielectric loss at single photon energies and millikelvin temperatures. Appl Phys Lett, 2008, 92: 112903
Baselmans J, Yates S J C, Barends R, et al. Noise and sensitivity of aluminum kinetic inductance detectors for sub-mm astronomy. J Low Temp Phys, 2008, 151: 524–529
Gao J, Zmuidzinas J, Mazin B A, et al. Noise properties of superconducting coplanar waveguide microwave resonators. Appl Phys Lett, 2007, 90: 102507
Marsili F, Najafi F, Dauler E, et al. Single-photon detectors based on ultranarrow superconducting nanowires. Nano Lett, 2011, 11: 2048–2053
Caloz M, Perrenoud M, Autebert C, et al. High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors. Appl Phys Lett, 2018, 112: 061103
Yang J K W, Kerman A J, Dauler E A, et al. Modeling the electrical and thermal response of superconducting nanowire single-photon detectors. IEEE Trans Appl Supercond, 2007, 17: 581–585
Semenov A D, Gol’tsman G N, Korneev A A. Quantum detection by current carrying superconducting film. Phys C-Supercond, 2001, 351: 349–356
Natarajan C M, Tanner M G, Hadfield R H. Superconducting nanowire single-photon detectors: physics and applications. Supercond Sci Technol, 2012, 25: 063001
Renema J J, Gaudio R, Wang Q, et al. Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector. Phys Rev Lett, 2014, 112: 117604
Eisaman M D, Fan J, Migdall A, et al. Invited review article: single-photon sources and detectors. Rev Sci Instrum, 2011, 82: 071101
Semenov A, Engel A, Hübers H W, et al. Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips. Eur Phys J B, 2005, 47: 495–501
Zotova A N, Vodolazov D Y. Photon detection by current-carrying superconducting film: a time-dependent Ginzburg-Landau approach. Phys Rev B, 2012, 85: 024509
Bulaevskii L N, Graf M J, Batista C D, et al. Vortex-induced dissipation in narrow current-biased thin-film superconducting strips. Phys Rev B, 2011, 83: 144526
Becker W. Advanced Time-Correlated Single Photon Counting Techniques. Berlin: Springer, 2005
Zhang X. Characteristics of tungsten silicide and its application for single X-ray photon detection. Dissertation for Ph.D. Degree. Zurich: University of Zurich, 2018
Acknowledgements
This work was supported by National Key R&D Program of China (Grant No. 2017YFA0304000), National Natural Science Foundation of China (Grant Nos. 61671438, U1631240), Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01), and Program of Shanghai Academic/Technology Research Leader (Grant No. 18XD1404600).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yang, C., Si, M. & You, L. Superconducting X-ray detectors. Sci. China Inf. Sci. 63, 180502 (2020). https://doi.org/10.1007/s11432-020-2932-8
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11432-020-2932-8