Skip to main content

Suboptimal adaptive tracking control for FIR systems with binary-valued observations


In this paper, we investigate and analyze the suboptimal adaptive control for finite impulse response (FIR) systems with binary-valued observations. As the parameters of FIR systems are unknown and the measurable observations can only provide limited information, we propose and analyze a two-segment design method of an adaptive control law. First, we divide the system running time axis into many sections; each of these sections is divided into two segments. During the short segment, we design the system inputs for estimating parameters. Thus, we employ the empirical-measure-based technique for designing the identification algorithm. Second, we introduce a tracking control law to track a given target based on the system parameter estimates obtained in the short segment. We achieve this using the certainty equivalent principle in the long segment. As the length of short segments tends to infinity, we observe that the parameter estimation algorithm is consistent. However, when the length of segments tends to infinity, we find that the adaptive tracking control law is asymptotically suboptimal. Finally, we demonstrate the efficiency of the two-segment design method using the simulation results.

This is a preview of subscription content, access via your institution.


  1. Wang L Y, Zhang J F, Yin G G. System identification using binary sensors. IEEE Trans Automat Contr, 2003, 48: 1892–1907

    MathSciNet  Article  Google Scholar 

  2. Wang T, Zhang H, Zhao Y. Parameter estimation based on set-valued signals: theory and application. Acta Math Appl Sin Engl Ser, 2019, 35: 255–263

    MathSciNet  Article  Google Scholar 

  3. Wang L Y, Yin G G, Zhang J F. Joint identification of plant rational models and noise distribution functions using binary-valued observations. Automatica, 2006, 42: 535–547

    MathSciNet  Article  Google Scholar 

  4. Wang L Y, Yin G G. Asymptotically efficient parameter estimation using quantized output observations. Automatica, 2007, 43: 1178–1191

    MathSciNet  Article  Google Scholar 

  5. Zhao Y L, Wang L Y, Yin G G, et al. Identification of Wiener systems with binary-valued output observations. Automatica, 2007, 43: 1752–1765

    MathSciNet  Article  Google Scholar 

  6. Zhao Y L, Zhang J F, Wang L Y, et al. Identification of Hammerstein systems with quantized observations. SIAM J Control Opt, 2010, 48: 4352–4376

    MathSciNet  Article  Google Scholar 

  7. Wang L Y, Xu G H, Yin G G. State reconstruction for linear time-invariant systems with binary-valued output observations. Syst Control Lett, 2008, 57: 958–963

    MathSciNet  Article  Google Scholar 

  8. Jafari K, Juillard J, Roger M. Convergence analysis of an online approach to parameter estimation problems based on binary observations. Automatica, 2012, 48: 2837–2842

    MathSciNet  Article  Google Scholar 

  9. Guo J, Zhao Y L. Recursive projection algorithm on FIR system identification with binary-valued observations. Automatica, 2013, 49: 3396–3401

    MathSciNet  Article  Google Scholar 

  10. You K Y. Recursive algorithms for parameter estimation with adaptive quantizer. Automatica, 2015, 52: 192–201

    MathSciNet  Article  Google Scholar 

  11. Wang T, Tan J W, Zhao Y L. Asymptotically efficient non-truncated identification for FIR systems with binary-valued outputs. Sci China Inf Sci, 2018, 61: 129208

    MathSciNet  Article  Google Scholar 

  12. Risuleo R S, Bottegal G, Hjalmarsson H. Approximate maximum-likelihood identification of linear systems from quantized measurements. IFAC-PapersOnLine, 2018, 51: 724–729

    Article  Google Scholar 

  13. Yu C P, Zhang C S, Xie L H. Blind system identification using precise and quantized observations. Automatica, 2013, 49: 2822–2830

    MathSciNet  Article  Google Scholar 

  14. Guo J, Diao J D. Prediction-based event-triggered identification of quantized input FIR systems with quantized output observations. Sci China Inf Sci, 2020, 63: 112201

    MathSciNet  Article  Google Scholar 

  15. Zhang H, Wang T, Zhao Y L. FIR system identification with set-valued and precise observations from multiple sensors. Sci China Inf Sci, 2019, 62: 052203

    MathSciNet  Article  Google Scholar 

  16. Guo J, Zhang J F, Zhao Y L. Adaptive tracking control of a class of first-order systems with binary-valued observations and time-varying thresholds. IEEE Trans Automat Contr, 2011, 56: 2991–2996

    MathSciNet  Article  Google Scholar 

  17. Guo J, Zhang J F, Zhao Y L. Adaptive tracking of a class of first-order systems with binary-valued observations and fixed thresholds. J Syst Sci Complex, 2012, 25: 1041–1051

    MathSciNet  Article  Google Scholar 

  18. Zhao Y L, Guo J, Zhang J F. Adaptive tracking control of linear systems with binary-valued observations and periodic target. IEEE Trans Automat Contr, 2013, 58: 1293–1298

    MathSciNet  Article  Google Scholar 

  19. Wang T, Hu M, Zhao Y L. Adaptive tracking control of FIR systems under binary-valued observations and recursive projection identification. IEEE Trans Syst Man Cybern Syst, 2020. doi:

  20. Jing L D, Zhang J F. Tracking control and parameter identification with quantized ARMAX systems. Sci China Inf Sci, 2019, 62: 199203

    MathSciNet  Article  Google Scholar 

  21. Bu X H, Hou Z S. Adaptive iterative learning control for linear systems with binary-valued observations. IEEE Trans Neural Netw Learn Syst, 2018, 29: 232–237

    MathSciNet  Article  Google Scholar 

  22. Guo J, Wang L Y, Yin G, et al. Asymptotically efficient identification of FIR systems with quantized observations and general quantized inputs. Automatica, 2015, 57: 113–122

    MathSciNet  Article  Google Scholar 

  23. Chow Y S, Teicher H. Probability Theory: Independence, Interchangeability, Martingales. 2nd ed. New York: Springer, 1997

    Book  Google Scholar 

  24. Wang L Y, Zhang J F, Yin G G, et al. System Identification With Quantized Observations. Boston: Birkhäuser, 2010

    Book  Google Scholar 

Download references


This work was partly supported by National Natural Science Foundation of China (Grant No. 61603034). Beijing Municipal Natural Science Foundation (Grant No. 3182027), and Fundamental Research Funds for the Central Universities of China (Grant No. FRF-GF-19-016B).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Zhengguang Xu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, X., Xu, Z., Cui, J. et al. Suboptimal adaptive tracking control for FIR systems with binary-valued observations. Sci. China Inf. Sci. 64, 172202 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI:


  • parameter identification
  • FIR systems
  • binary-valued observations
  • asymptotically suboptimal tracking
  • adaptive control