Skip to main content

Optimal containment control of continuous-time multi-agent systems with unknown disturbances using data-driven approach

This is a preview of subscription content, access via your institution.

References

  1. Wen G H, Zhao Y, Duan Z S, et al. Containment of higher-order multi-leader multi-agent systems: a dynamic output approach. IEEE Trans Autom Control, 2016, 61: 1135–1140

    MathSciNet  Article  Google Scholar 

  2. Lou Y C, Hong Y G. Target containment control of multi-agent systems with random switching interconnection topologies. Automatica, 2012, 48: 879–885

    MathSciNet  Article  Google Scholar 

  3. Meng Z Y, Ren W, You Z. Distributed finite-time attitude containment control for multiple rigid bodies. Automatica, 2010, 46: 2092–2099

    MathSciNet  Article  Google Scholar 

  4. Haghshenas H, Badamchizadeh M A, Baradarannia M. Containment control of heterogeneous linear multi-agent systems. Automatica, 2015, 54: 210–216

    MathSciNet  Article  Google Scholar 

  5. Peng Z N, Zhao Y Y, Hu J P, et al. Data-driven optimal tracking control of discrete-time multi-agent systems with two-stage policy iteration algorithm. Inf Sci, 2019, 481: 189–202

    MathSciNet  Article  Google Scholar 

  6. Peng Z N, Hu J P, Ghosh B K. Data-driven containment control of discrete-time multi-agent systems via value iteration. Sci China Inf Sci, 2020, 63: 189205

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61473061, 71503206, 61104104) and Program for New Century Excellent Talents in University (Grant No. NCET-13-0091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangping Hu.

Supplementary File

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peng, Z., Zhang, J., Hu, J. et al. Optimal containment control of continuous-time multi-agent systems with unknown disturbances using data-driven approach. Sci. China Inf. Sci. 63, 209205 (2020). https://doi.org/10.1007/s11432-019-9868-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-9868-2