Variation of a signal in Schwarzschild spacetime


In this paper, the variation of a signal in Schwarzschild spacetime is studied and a general equation for frequency shift parameter (FSP) is presented. The FSP is found to depend on the gravitationally modified Doppler effects and the gravitational effects of observers. In addition, the time rates of a transmitter and receiver may differ. When the FSP is a function of the receiver time, the FSP contributed through the gravitational effect (GFSP) or the gravitationally modified Doppler effect (GMDFSP) may convert a bandlimited signal into a non-bandlimited signal. Using the general equation, the FSP as a function of receiver time is calculated in three scenarios: (a) a spaceship leaving a star at constant velocity communicating with a transmitter at a fixed position; (b) a spaceship moving around a star with different conic trajectories communicating with a transmitter at a fixed position; and (c) a signal transmitted from a fixed position in a star system to a receiver following an elliptic trajectory in another star system. The studied stars are a Sun-like star, a white dwarf, and a neutron star. The theory is illustrated with numerical examples.

This is a preview of subscription content, access via your institution.


  1. 1

    Barnes B. In a breathtaking first, NASA craft exits the solar system. New York Times, 2013

  2. 2

    Gill V. NASA’s Voyager 2 probe ‘leaves the solar system’. BBC News, 2018

  3. 3

    Zhao K L, Zhang Q Y. Network protocol architectures for future deep-space internetworking. Sci China Inf Sci, 2018, 61: 040303

    MathSciNet  Article  Google Scholar 

  4. 4

    Wu W, Tang Y H, Zhang L H, et al. Design of communication relay mission for supporting lunar-farside soft landing. Sci China Inf Sci, 2018, 61: 040305

    MathSciNet  Article  Google Scholar 

  5. 5

    Wan P, Zhan Y F, Pan X H. Solar system interplanetary communication networks: architectures, technologies and developments. Sci China Inf Sci, 2018, 61: 040302

    Article  Google Scholar 

  6. 6

    Pan X H, Zhan Y F, Wan P, et al. Review of channel models for deep space communications. Sci China Inf Sci, 2018, 61: 040304

    Article  Google Scholar 

  7. 7

    Wu S, Li D Z, Wang Z Y, et al. Novel distributed UEP rateless coding scheme for data transmission in deep space networks. Sci China Inf Sci, 2018, 61: 040306

    MathSciNet  Article  Google Scholar 

  8. 8

    Wu W, Chen M, Zhang Z, et al. Overview of deep space laser communication. Sci China Inf Sci, 2018, 61: 040301

    MathSciNet  Article  Google Scholar 

  9. 9

    Einstein A. Die feldgleichungen der gravitation. In: Das Relativitatsprinzip. Berlin: Springer, 1915. 137–141

  10. 10

    Schwarzschild K. Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. 1916.

  11. 11

    Schwarzschild K. Uber das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie. 1916.

  12. 12

    Pound R V, Rebka G A J. Gravitational red-shift in nuclear resonance. Phys Rev Lett, 1959, 3: 439–441

    Article  Google Scholar 

  13. 13

    Pound R V, Snider J L. Effect of gravity on Gamma radiation. Phys Rev, 1965, 140: 788–803

    Article  Google Scholar 

  14. 14

    Snider J L. New measurement of the solar gravitational red shift. Phys Rev Lett, 1972, 28: 853–856

    Article  Google Scholar 

  15. 15

    Turner K C, Hill H A. New experimental limit on velocity-dependent interactions of clocks and distant matter. Phys Rev, 1964, 134: 252–256

    Article  MATH  Google Scholar 

  16. 16

    Harkins M D. The relativistic Doppler shift in satellite tracking. Radio Sci, 1979, 14: 671–675

    Article  Google Scholar 

  17. 17

    Love A W. GPS, atomic clocks and relativity. IEEE Potentials, 2002, 13: 11–15

    Article  Google Scholar 

  18. 18

    Hanson J E. Principles of X-ray navigation. Dissertation for Ph.D. Degree. Palo Alto: Stanford University, 1996

    Google Scholar 

  19. 19

    Sheikh S I. The use of variable celestial X-ray sources for spacecraft navigation. Dissertation for Ph.D. Degree. College Park: University of Maryland, 2005

    Google Scholar 

  20. 20

    Sheikh S I, Pines D J, Ray P S, et al. Spacecraft navigation using X-ray pulsars. J Guid Control Dyn, 2006, 29: 49–63

    Article  Google Scholar 

  21. 21

    Oberg J. Titan calling. IEEE Spectr, 2004, 41: 28–33

    Article  Google Scholar 

  22. 22

    Misner C W, Thorne K S, Wheeler J A. Gravitation. San Francisco: W H Freeman and Company, 1973

    Google Scholar 

  23. 23

    Wald R M. General Relativity. Chicago: the University of Chicago Press, 1984

    Google Scholar 

  24. 24

    Møller C. The Theory of Relativity. 2nd ed. Oxford: Clarendon Press, 1972

    Google Scholar 

  25. 25

    Oppenheim A V, Willsky A S, Nawab S H. Signals and Systems. 2nd ed. New Jersey: Prentice-Hall, 1996

    Google Scholar 

  26. 26

    Xia X-G, Zhang Z. On a conjecture on time-warped band-limited signals. IEEE Trans Signal Process, 1992, 40: 252–254

    Article  Google Scholar 

  27. 27

    Almeida L B. The fractional Fourier transform and time-frequency representations. IEEE Trans Signal Process, 1994, 42: 3084–3091

    Article  Google Scholar 

  28. 28

    Tao R, Li B Z, Wang Y. Spectral analysis and reconstruction for periodic nonuniformly sampled signals in fractional Fourier domain. IEEE Trans Signal Process, 2007, 55: 3541–3547

    MathSciNet  Article  MATH  Google Scholar 

  29. 29

    Xia X-G. On bandlimited signals with fractional Fourier transform. IEEE Signal Process Lett, 1996, 3: 72–74

    Article  Google Scholar 

  30. 30

    Carroll B W, Ostlie D A. An Introduction to Modern Astrophysics. Cambridge: Cambridge University Press, 2017

    Google Scholar 

  31. 31

    Woolfson M. The origin and evolution of the solar system. Astron Geophys, 2000, 41: 12–19

    Article  Google Scholar 

  32. 32

    Shipman H L. Masses and radii of white-dwarf stars. III-results for 110 hydrogen-rich and 28 helium-rich stars. Astrophys J, 1979, 228: 240–256

    Google Scholar 

  33. 33

    Kepler S O, Kleinman S J, Nitta A, et al. White dwarf mass distribution in the SDSS. Mon Not R Astron Soc, 2007, 375: 1315–1324

    Article  Google Scholar 

  34. 34

    Ozel F, Psaltis D, Narayan R, et al. On the mass distribution and birth masses of neutron stars. Astrophys J, 2012, 757: 55

    Article  Google Scholar 

  35. 35

    Chamel N, Haensel P, Zdunik J L, et al. On the maximum mass of neutron stars. Int J Mod Phys E, 2013, 22: 1330018

    Article  Google Scholar 

  36. 36

    Antoniadis J, Freire P C C, Wex N, et al. A massive pulsar in a compact relativistic binary. Science, 2013, 340: 1233232

    Article  Google Scholar 

  37. 37

    Hasensel P, Potekhin A Y, Yakovlev D G. Neutron Star 1: Equation of State and Structure. Berlin: Springer, 2007

    Google Scholar 

  38. 38

    Steiner A W, Lattimer J M, Brown E F. The neutron star mass-radius relation and the equation of state of dense matter. Astrophys J, 2013, 765: 5

    Article  Google Scholar 

  39. 39

    Zhao X F. The properties of the massive neutron star PSR J0348+0432. Int J Mod Phys D, 2015, 24: 1550058

    Article  Google Scholar 

Download references


This work was supported in part by National Natural Science Foundation of China (Grant Nos. 61421001, 61331021, U1833203).

Author information



Corresponding author

Correspondence to Huan Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Xia, XG. & Tao, R. Variation of a signal in Schwarzschild spacetime. Sci. China Inf. Sci. 62, 82304 (2019).

Download citation


  • deep space communications
  • general relativity
  • Schwarzschild spacetime
  • bandlimited signal
  • gravitationally modified Doppler effect