Skip to main content
Log in

Extending generalized unsupervised manifold alignment

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Building connections between different data sets is a fundamental task in machine learning and related application community. With proper manifold alignment, the correspondences between data sets will assist us with comprehensive study of data processes and analyses. Despite the several progresses in semi-supervised and unsupervised scenarios, potent manifold alignment methods in generalized and realistic circumstances remain in absence. Besides, theretofore unsupervised algorithms seldom prove themselves mathematically. In this paper, we devise an efficient method to properly solve the unsupervised manifold alignment problem and denominate it as extending generalized unsupervised manifold alignment (EGUMA) method. More specifically, an explicit relaxed integer programming method is adopted to solve the unsupervised manifold alignment problem, which reconciles three factors covering the updated local structure matching, the the feature comparability and geometric preservation. An additional effort is retained on extending the Frank Wolfe algorithm to tacking our optimization problem. Besides our previous endeavors we adopt a new strategy for neighborhood discovery in the manifolds. The main advantages over previous methods accommodate (1) simultaneous alignment and discovery of manifolds; (2) complete unsupervised learning structure without any prerequisite correspondence; (3) more concise local geometry for the embedding space; (4) efficient alternative optimization; (5) strict mathematical analysis on the convergence and efficiency issues. Experiments on real-world applications verify the high accuracy and efficiency of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li Z, Tang J. Unsupervised feature selection via nonnegative spectral analysis and redundancy control. IEEE Trans Image Process, 2015, 24: 5343–5355

    Article  MathSciNet  MATH  Google Scholar 

  2. Li Z, Tang J, He X. Robust structured nonnegative matrix factorization for image representation. IEEE Trans Neural Netw Learn Syst, 2018, 29: 1947–1960

    Article  MathSciNet  Google Scholar 

  3. Li Z C, Liu J, Yang Y, et al. Clustering-guided sparse structural learning for unsupervised feature selection. IEEE Trans Knowl Data Eng, 2014, 26: 2138–2150

    Article  Google Scholar 

  4. Wang J, Feng W, Chen Y, et al. Visual domain adaptation with manifold embedded distribution alignment. In: Proceedings of ACM International Conference on Multimedia, 2018. 402–410

  5. Peng X, Bai Q, Xia X, et al. Moment matching for multi-source domain adaptation. In: Proceedings of IEEE International Conference on Computer Vision, 2019. 1406–1415

  6. Ji P, Qin D, Feng P, et al. Manifold alignment-based radio map construction in indoor localization. In: Proceedings of International Conference on Machine Learning and Intelligent Communications, 2018. 327–337

  7. Tenenbaum J B, de Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290: 2319–2323

    Article  Google Scholar 

  8. Zhang K, Kwok J T. Clustered Nyström method for large scale manifold learning and dimension reduction. IEEE Trans Neural Netw, 2010, 21: 1576–1587

    Article  Google Scholar 

  9. Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290: 2323–2326

    Article  Google Scholar 

  10. van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res, 2008, 9: 2579–2605

    MATH  Google Scholar 

  11. Chen J, Ma Z M, Liu Y. Local coordinates alignment with global preservation for dimensionality reduction. IEEE Trans Neural Netw Learn Syst, 2013, 24: 106–117

    Article  Google Scholar 

  12. Wang C, Mahadevan S. Manifold alignment without correspondence. In: Proceedings of International Joint Conference on Artificial Intelligence, 2009

  13. Abeo T A, Shen X J, Ganaa E D, et al. Manifold alignment via global and local structures preserving PCA framework. IEEE Access, 2019, 7: 38123–38134

    Article  Google Scholar 

  14. Ham J, Lee D D, Saul L K. Semisupervised alignment of manifolds. In: Proceedings of International Conference on Artificial Intelligence and Statistics, 2005. 120: 27

    Google Scholar 

  15. Shon A, Grochow K, Hertzmann A, et al. Learning shared latent structure for image synthesis and robotic imitation. In: Proceedings of Neural Information Processing Systems, 2006. 1233–1240

  16. Lafon S, Keller Y, Coifman R R. Data fusion and multicue data matching by diffusion maps. IEEE Trans Pattern Anal Mach Intell, 2006, 28: 1784–1797

    Article  Google Scholar 

  17. Xiong L, Wang F, Zhang C. Semi-definite manifold alignment. In: Proceedings of European Conference on Machine Learning, Berlin, 2007. 773–781

  18. Wang C, Mahadevan S. Manifold alignment using procrustes analysis. In: Proceedings of International Conference on Machine Learning, 2008. 1120–1127

  19. Wang C, Mahadevan S. Heterogeneous domain adaptation using manifold alignment. In: Proceedings of International Joint Conference on Artificial Intelligence, Barcelona, 2011

  20. Wang C, Cao L, Fan J. Building joint spaces for relation extraction. In: Proceedings of International Joint Conference on Artificial Intelligence, New York, 2016. 2936–2942

  21. Pei Y R, Huang F C, Shi F H, et al. Unsupervised image matching based on manifold alignment. IEEE Trans Pattern Anal Mach Intell, 2012, 34: 1658–1664

    Article  Google Scholar 

  22. Cui Z, Shan S, Zhang H, et al. Image sets alignment for video-based face recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2012. 2626–2633

  23. Cui Z, Chang H, Shan S, et al. Generalized unsupervised manifold alignment. In: Proceedings of Neural Information Processing Systems, 2014. 2429–2437

  24. Frank M, Wolfe P. An algorithm for quadratic programming. Naval Res Logist, 1956, 3: 95–110

    Article  MathSciNet  Google Scholar 

  25. Quadrianto N, Song L, Smola A J. Kernelized sorting. In: Proceedings of Neural Information Processing Systems, 2009. 1289–1296

  26. Haghighi A, Liang P, Berg-Kirkpatrick T, et al. Learning bilingual lexicons from monolingual corpora. In: Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics, 2008. 771–779

  27. Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput, 2003, 15: 1373–1396

    Article  MATH  Google Scholar 

  28. Hardoon D R, Szedmak S, Shawe-Taylor J. Canonical correlation analysis: an overview with application to learning methods. Neural Comput, 2004, 16: 2639–2664

    Article  MATH  Google Scholar 

  29. Spielman D A, Teng S H. Smoothed analysis of algorithms. J ACM, 2004, 51: 385–463

    Article  MathSciNet  MATH  Google Scholar 

  30. Dantzig G B, Thapa M N. Linear Programming 1: Introduction. Berlin: Springer, 2006

    MATH  Google Scholar 

  31. Abraham R, Marsden J E, Ratiu T. Manifolds, Tensor Analysis, and Applications. Berlin: Springer, 2012

    MATH  Google Scholar 

  32. Beck A, Tetruashvili L. On the convergence of block coordinate descent type methods. SIAM J Optim, 2013, 23: 2037–2060

    Article  MathSciNet  MATH  Google Scholar 

  33. Tewari A, Ravikumar P K, Dhillon I S. Greedy algorithms for structurally constrained high dimensional problems. In: Proceedings of Neural Information Processing Systems, 2011. 882–890

  34. Wolf L, Hassner T, Maoz I. Face recognition in unconstrained videos with matched background similarity. In: Proceedings of Computer Vision & Pattern Recognition, 2011

  35. Cui Z, Li W, Xu D, et al. Fusing robust face region descriptors via multiple metric learning for face recognition in the wild. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Portland Oregon, 2013. 3554–3561

  36. Yamaguchi O, Fukui K, Maeda K. Face recognition using temporal image sequence. In: Proceedings of the 3rd International Conference on Face & Gesture Recognition, Nara, 1998. 318–323

  37. Wang R, Shan S, Chen X, et al. Manifold-manifold distance with application to face recognition based on image set. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2008. 1–8

  38. Cevikalp H, Triggs B. Face recognition based on image sets. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, 2010. 2567–2573

  39. Hu Y, Mian A S, Owens R. Sparse approximated nearest points for image set classification. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2011. 121–128

  40. Kim T K, Kittler J, Cipolla R. Discriminative learning and recognition of image set classes using canonical correlations. IEEE Trans Pattern Anal Mach Intell, 2007, 29: 1005–1018

    Article  Google Scholar 

  41. Saenko K, Kulis B, Fritz M, et al. Adapting visual category models to new domains. In: Proceedings of European Conference on Computer Vision, Berlin, 2010. 213–226

  42. Griffin G, Holub A, Perona P. Caltech-256 Object Category Dataset. Technical Report. Pasadena: California Institute of Technology, 2007

    Google Scholar 

  43. Gopalan R, Li R, Chellappa R. Domain adaptation for object recognition: an unsupervised approach. In: Proceedings of IEEE International Conference on Computer Vision, Barcelona, 2011. 999–1006

  44. Gong B, Shi Y, Sha F, et al. Geodesic flow kernel for unsupervised domain adaptation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2012. 2066–2073

  45. Cui Z, Li W, Xu D, et al. Flowing on riemannian manifold: domain adaptation by shifting covariance. IEEE Trans Cybern, 2014, 44: 2264–2273

    Article  Google Scholar 

  46. Bay H, Tuytelaars T, van Gool L. Surf: speeded up robust features. In: Proceedings of European Conference on Computer Vision, Berlin, 2006. 404–417

  47. Shi Y, Sha F. Information-theoretical learning of discriminative clusters for unsupervised domain adaptation. 2012. ArXiv:1206.6438

  48. Fernando B, Habrard A, Sebban M, et al. Unsupervised visual domain adaptation using subspace alignment. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2013. 2960–2967

  49. Sugar C A, James G M. Finding the number of clusters in a dataset. J Am Statistical Association, 2003, 98: 750–763

    Article  MATH  Google Scholar 

  50. Rasiwasia N, Costa Pereira J, Coviello E, et al. A new approach to cross-modal multimedia retrieval. In: Proceedings of ACM International Conference on Multimedia, 2010. 251–260

  51. Sharma A, Kumar A, Daume H, et al. Generalized multiview analysis: a discriminative latent space. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2012. 2160–2167

  52. Everingham M, van Gool L, Williams C K I, et al. The pascal visual object classes (VOC) challenge. Int J Comput Vis, 2010, 88: 303–338

    Article  Google Scholar 

  53. Chua T S, Tang J, Hong R, et al. NUS-WIDE: a real-world web image database from National University of Singapore. In: Proceedings of the ACM International Conference on Image and Video Retrieval, 2009. 48

  54. Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks. In: Proceedings of Neural Information Processing Systems, 2012. 1097–1105

  55. Wu F, Lu X, Zhang Z, et al. Cross-media semantic representation via bi-directional learning to rank. In: Proceedings of ACM International Conference on Multimedia, 2013. 877–886

  56. Gross R, Matthews I, Cohn J, et al. Multi-PIE. Image Vision Comput, 2010, 28: 807–813

    Article  Google Scholar 

  57. Laub A J. Matrix Analysis for Scientists and Engineers. Philadelphia: SIAM, 2005

    MATH  Google Scholar 

  58. Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004

    Book  MATH  Google Scholar 

  59. Tseng P. Convergence of a block coordinate descent method for nondifferentiable minimization. J Opt Theor Appl, 2001, 109: 475–494

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Natural Science Foundation of China (Grant Nos. 61876171, 61976203) and Open Project Fund from Shenzhen Institute of Artificial Intelligence and Robotics for Society (Grant No. AC01202005015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Cui, Z., Chang, H. et al. Extending generalized unsupervised manifold alignment. Sci. China Inf. Sci. 65, 172103 (2022). https://doi.org/10.1007/s11432-019-3019-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-3019-3

Keywords

Navigation