Skip to main content

Machine-learning-based high-resolution DOA measurement and robust directional modulation for hybrid analog-digital massive MIMO transceiver

Abstract

At hybrid analog-digital (HAD) transceiver, an improved HAD estimation of signal parameters via rotational invariance techniques (ESPRIT), called I-HAD-ESPRIT, is proposed to measure the direction of arrival (DOA) of a desired user, where the phase ambiguity due to HAD structure is dealt with successfully. Subsequently, a machine-learning (ML) framework is proposed to improve the precision of measuring DOA. Meanwhile, we find that the probability density function (PDF) of DOA measurement error (DOAME) can be approximated as a Gaussian distribution by the histogram method in ML. Then, a slightly large training data set (TDS) and a relatively small real-time set (RTS) of DOA are formed to predict the mean and variance of DOA/DOAME in the training stage and real-time stage, respectively. To improve the precisions of DOA/DOAME, three weight combiners are proposed to combine the-maximum-likelihood-learning outputs of TDS and RTS. Using the mean and variance of DOA/DOAME, their PDFs can be given directly, and we propose a robust beamformer for directional modulation (DM) transmitter with HAD by fully exploiting the PDF of DOA/DOAME, especially a robust analog beamformer on RF chain. Simulation results show that: (1) the proposed I-HAD-ESPRIT can achieve the HAD Cramer-Rao lower bound (CRLB); (2) the proposed ML framework performs much better than the corresponding real-time one without training stage; (3) the proposed robust DM transmitter can perform better than the corresponding non-robust ones in terms of secrecy rate.

This is a preview of subscription content, access via your institution.

References

  1. Godara L C. Application of antenna arrays to mobile communications. II. Beam-forming and direction-of-arrival considerations. Proc IEEE, 1997, 85: 1195–1245

    Article  Google Scholar 

  2. Chen J C, Yao K, Hudson R E. Source localization and beamforming. IEEE Signal Process Mag, 2002, 19: 30–39

    Article  Google Scholar 

  3. Stoica P, Babu P, Li J. SPICE: a sparse covariance-based estimation method for array processing. IEEE Trans Signal Process, 2011, 59: 629–638

    MathSciNet  Article  Google Scholar 

  4. Zhang X F, Xu L Y, Xu L, et al. Direction of departure (DOD) and direction of arrival (DOA) estimation in MIMO radar with reduced-dimension MUSIC. IEEE Commun Lett, 2010, 14: 1161–1163

    Article  Google Scholar 

  5. Shafin R, Liu L J, Zhang J Z, et al. DoA estimation and capacity analysis for 3-D millimeter wave massive-MIMO/FD-MIMO OFDM systems. IEEE Trans Wirel Commun, 2016, 15: 6963–6978

    Article  Google Scholar 

  6. Wan L T, Han G J, Jiang J F, et al. DOA estimation for coherently distributed sources considering circular and noncircular signals in massive MIMO systems. IEEE Syst J, 2017, 11: 41–49

    Article  Google Scholar 

  7. Huang H J, Yang J, Huang H, et al. Deep learning for super-resolution channel estimation and DOA estimation based massive MIMO system. IEEE Trans Veh Technol, 2018, 67: 8549–8560

    Article  Google Scholar 

  8. Tuncer T E, Friedlander B. Classical and Modern Direction-of-Arrival Estimation. New York: Elsevier, 2009

    Google Scholar 

  9. Capon J. High-resolution frequency-wavenumber spectrum analysis. Proc IEEE, 1969, 57: 1408–1418

    Article  Google Scholar 

  10. Bartlett M S. An Introduction to Stochastic Processes with Special References to Methods and Applications. New York: Cambridge University Press, 1961

    Google Scholar 

  11. Schmidt R. Multiple emitter location and signal parameter estimation. IEEE Trans Antenna Propag, 1986, 34: 276–280

    Article  Google Scholar 

  12. Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans Acoust Speech Signal Process, 1989, 37: 984–995

    Article  Google Scholar 

  13. Malioutov D, Cetin M, Willsky A S. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans Signal Process, 2005, 53: 3010–3022

    MathSciNet  Article  Google Scholar 

  14. Hyder M M, Mahata K. Direction-of-arrival estimation using a mixed ℓ2,0 norm approximation. IEEE Trans Signal Process, 2010, 58: 4646–4655

    MathSciNet  Article  Google Scholar 

  15. Li Q L, Zhang X L, Li H. Online direction of arrival estimation based on deep learning. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018

  16. Chakrabarty S, Habets E A P. Broadband DOA estimation using convolutional neural networks trained with noise signals. In: Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 2017

  17. Shu F, Qin Y L, Liu T T, et al. Low-complexity and high-resolution DOA estimation for hybrid analog and digital massive MIMO receive array. IEEE Trans Commun, 2018, 66: 2487–2501

    Article  Google Scholar 

  18. Sidiropoulos N D, Bro R, Giannakis G B. Parallel factor analysis in sensor array processing. IEEE Trans Signal Process, 2000, 48: 2377–2388

    Article  Google Scholar 

  19. Wang H M, Zheng T X, Yuan J, et al. Physical layer security in heterogeneous cellular networks. IEEE Trans Commun, 2016, 64: 1204–1219

    Article  Google Scholar 

  20. Chen X M, Ng D W K, Gerstacker W H, et al. A survey on multiple-antenna techniques for physical layer security. IEEE Commun Surv Tut, 2017, 19: 1027–1053

    Article  Google Scholar 

  21. Babakhani A, Rutledge D B, Hajimiri A. Transmitter architectures based on near-field direct antenna modulation. IEEE J Solid-State Circ, 2008, 43: 2674–2692

    Article  Google Scholar 

  22. Daly M P, Bernhard J T. Directional modulation technique for phased arrays. IEEE Trans Antenna Propag, 2009, 57: 2633–2640

    Article  Google Scholar 

  23. Tennant A, Shi H Z. Enhancing the security of communication via directly modulated antenna arrays. IET Microw Antenna Propag, 2013, 7: 606–611

    Article  Google Scholar 

  24. Ding Y, Fusco V F. A vector approach for the analysis and synthesis of directional modulation transmitters. IEEE Trans Antenna Propag, 2014, 62: 361–370

    Article  Google Scholar 

  25. Hu J S, Shu F, Li J. Robust synthesis method for secure directional modulation with imperfect direction angle. IEEE Commun Lett, 2016, 20: 1084–1087

    Article  Google Scholar 

  26. Shu F, Wu X M, Li J, et al. Robust synthesis scheme for secure multi-beam directional modulation in broadcasting systems. IEEE Access, 2016, 4: 6614–6623

    Article  Google Scholar 

  27. Shu F, Zhu W, Zhou X W, et al. Robust secure transmission of using main-lobe-integration-based leakage beamforming in directional modulation MU-MIMO systems. IEEE Syst J, 2018, 12: 3775–3785

    Article  Google Scholar 

  28. Zhu W, Shu F, Liu T T, et al. Secure precise transmission with multi-relay-aided directional modulation. In: Proceedings of the 9th International Conference on Wireless Communications and Signal Processing (WCSP), 2017

  29. Zhou X B, Li J, Shu F, et al. Secure swipt for directional modulation aided af relaying networks. 2018. ArXiv:1803.05278

  30. Hu J S, Yan S H, Shu F, et al. Artificial-noise-aided secure transmission with directional modulation based on random frequency diverse arrays. IEEE Access, 2017, 5: 1658–1667

    Article  Google Scholar 

  31. Shu F, Wu X M, Hu J S, et al. Secure and precise wireless transmission for random-subcarrier-selection-based directional modulation transmit antenna array. IEEE J Sel Areas Commun, 2018, 36: 890–904

    Article  Google Scholar 

  32. Zhang X Y, Molisch A F, Kung S Y. Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection. IEEE Trans Signal Process, 2005, 53: 4091–4103

    MathSciNet  Article  Google Scholar 

  33. Sohrabi F, Yu W. Hybrid analog and digital beamforming for mmWave OFDM large-scale antenna arrays. IEEE J Sel Areas Commun, 2017, 35: 1432–1443

    Article  Google Scholar 

  34. Sohrabi F, Yu W. Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE J Sel Top Signal Process, 2016, 10: 501–513

    Article  Google Scholar 

  35. Yu X H, Shen J C, Zhang J, et al. Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 2016, 10: 485–500

    Article  Google Scholar 

  36. Gao X Y, Dai L L, Han S F, et al. Energy-efficient hybrid analog and digital precoding for mmWave MIMO systems with large antenna arrays. IEEE J Sel Areas Commun, 2016, 34: 998–1009

    Article  Google Scholar 

  37. Ramadan Y R, Minn H, Ibrahim A S. Hybrid analog-digital precoding design for secrecy mmWave MISO-OFDM systems. IEEE Trans Commun, 2017, 65: 5009–5026

    Article  Google Scholar 

  38. Heath R W, Gonzalez-Prelcic N, Rangan S, et al. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 2016, 10: 436–453

    Article  Google Scholar 

  39. Horn R A, Johnson C R. Pattern Recognition and Machine Learning. Berlin: Springer, 2013

    Google Scholar 

  40. Shu F, Wan S M, Yan S H, et al. Secure directional modulation to enhance physical layer security in IoT networks. 2018. ArXiv:1712.02104

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Nos. 61771244, 61871229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Shu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhuang, Z., Xu, L., Li, J. et al. Machine-learning-based high-resolution DOA measurement and robust directional modulation for hybrid analog-digital massive MIMO transceiver. Sci. China Inf. Sci. 63, 180302 (2020). https://doi.org/10.1007/s11432-019-2921-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-2921-x

Keywords

  • hybrid analog and digital
  • ESPRIT
  • statistical learning
  • DM
  • robust precoder