Skip to main content
Log in

Fixed-time attitude tracking control for spacecraft based on a fixed-time extended state observer

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper deals with the problem of fixed-time attitude tracking control for spacecraft subject to model uncertainties and external disturbances. Firstly, by using a fixed-time extended state observer (FxTESO), the synthetic uncertainties generated by external disturbances and model deviations can be estimated and compensated accordingly. We propose a novel FxTESO aimed to improve previous methods. Compared with the existing extended state observer (ESO), the proposed FxTESO provides faster convergence and higher accuracy. Then, we design a fixed-time adaptive attitude tracking controller based on the strategy combining the FxTESO and fast non-singular terminal sliding mode control (FNTSMC), such that a desired attitude can be achieved accurately, which does not only allow providing fast and accurate responses, and acceptable chattering suppression, but also avoiding singularity. Finally, the numerical simulation results are discussed to verify the efficiency and merits of the proposed control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Du H B, Li S H, Qian C J. Finite-time attitude tracking control of spacecraft with application to attitude synchronization. IEEE Trans Autom Control, 2011, 56: 2711–2717

    Article  MathSciNet  MATH  Google Scholar 

  2. Xie Y C, Zhang H, Hu J, et al. Automatic control system design of Shenzhou spacecraft for rendezvous and docking (in Chinese). Sci Sin Tech, 2014, 44: 12–19

    Article  Google Scholar 

  3. Dong H Y, Hu Q L, Ma G F. Dual-quaternion based fault-tolerant control for spacecraft formation flying with finite-time convergence. ISA Trans, 2016, 61: 87–94

    Article  Google Scholar 

  4. Buzzoni A, Altavilla G, Galleti S. Optical tracking of deep-space spacecraft in Halo L2 orbits and beyond: the Gaia mission as a pilot case. Adv Space Res, 2016, 57: 1515–1527

    Article  Google Scholar 

  5. Xia K W, Huo W. Adaptive control for spacecraft rendezvous subject to actuator faults and saturations. ISA Trans, 2018, 80: 176–186

    Article  Google Scholar 

  6. Cui B, Xia Y Q, Liu K, et al. Velocity-observer-based distributed finite-time attitude tracking control for multiple uncertain rigid spacecraft. IEEE Trans Ind Inf, 2020, 16: 2509–2519

    Article  Google Scholar 

  7. Hu Q L, Xiao B, Friswell M I. Robust fault-tolerant control for spacecraft attitude stabilisation subject to input saturation. IET Control Theory Appl, 2011, 5: 271–282

    Article  MathSciNet  Google Scholar 

  8. Huo X, Hu Q L, Xiao B. Finite-time fault tolerant attitude stabilization control for rigid spacecraft. ISA Trans, 2014, 53: 241–250

    Article  Google Scholar 

  9. Ma G F, Li B, Yu Y B. Observer-based fault diagnosis incorporating adaptive sliding mode control for spacecraft attitude stabilization. In: Proceedings of the 34th Chinese Control Conference (CCC), 2015. 6224–6229

  10. Jin E, Sun Z W. Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control. Aerosp Sci Technol, 2008, 12: 324–330

    Article  MATH  Google Scholar 

  11. Zou A M, Kumar K D, Hou Z G, et al. Finite-time attitude tracking control for spacecraft using terminal sliding mode and Chebyshev neural network. IEEE Trans Syst Man Cybern B, 2011, 41: 950–963

    Article  Google Scholar 

  12. Zou A M. Finite-time output feedback attitude tracking control for rigid spacecraft. IEEE Trans Control Syst Technol, 2014, 22: 338–345

    Article  Google Scholar 

  13. Yoo D, Yau S S T, Gao Z Q. Optimal fast tracking observer bandwidth of the linear extended state observer. Int J Control, 2007, 80: 102–111

    Article  MathSciNet  MATH  Google Scholar 

  14. Yang J, Cui H Y, Li S H, et al. Optimized active disturbance rejection control for DC-DC buck converters with uncertainties using a reduced-order GPI observer. IEEE Trans Circ Syst I, 2018, 65: 832–841

    Google Scholar 

  15. Lu K F, Xia Y Q, Zhu Z, et al. Sliding mode attitude tracking of rigid spacecraft with disturbances. J Franklin Inst, 2012, 349: 413–440

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang H J, You X, Xia Y Q, et al. Adaptive control for attitude synchronisation of spacecraft formation via extended state observer. IET Control Theory Appl, 2014, 18: 2171–2185

    Article  MathSciNet  Google Scholar 

  17. Hu Q L, Shao X D, Chen W H. Robust fault-tolerant tracking control for spacecraft proximity operations using time-varying sliding mode. IEEE Trans Aerosp Electron Syst, 2018, 54: 2–17

    Article  Google Scholar 

  18. Yang J, Li T, Liu C J, et al. Nonlinearity estimator-based control of a class of uncertain nonlinear systems. IEEE Trans Autom Control, 2020, 65: 2230–2236

    Article  MathSciNet  MATH  Google Scholar 

  19. Venkataraman S T, Gulati S. Terminal sliding modes: a new approach to nonlinear control synthesis, In: Proceedings of International Conference on Advanced Robotics Robots in Unstructured Environments, 1991. 443–448

  20. Feng Y, Yu X H, Man Z H. Non-singular terminal sliding mode control of rigid manipulators. Automatica, 2002, 38: 2159–2167

    Article  MathSciNet  MATH  Google Scholar 

  21. Shen G H, Xia Y Q, Zhang J H, et al. Finite-time trajectory tracking control for entry guidance. Int J Robust Nonlinear Control, 2018, 28: 5895–5914

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhao L, Jia Y M. Finite-time attitude tracking control for a rigid spacecraft using time-varying terminal sliding mode techniques. Int J Control, 2015, 88: 1150–1162

    Article  MathSciNet  MATH  Google Scholar 

  23. Hu Q L, Niu G L. Attitude output feedback control for rigid spacecraft with finite-time convergence. ISA Trans, 2017, 70: 173–186

    Article  Google Scholar 

  24. Cao L, Qiao D, Chen X Q. Laplace ɩ1 Huber based cubature Kalman filter for attitude estimation of small satellite. Acta Astronaut, 2018, 148: 48–56

    Article  Google Scholar 

  25. Xia Y Q, Zhu Z, Fu M Y. Back-stepping sliding mode control for missile systems based on an extended state observer. IET Control Theory Appl, 2011, 5: 93–102

    Article  MathSciNet  Google Scholar 

  26. Talole S E, Kolhe J P, Phadke S B. Extended-state-observer-based control of flexible-joint system with experimental validation. IEEE Trans Ind Electron, 2010, 57: 1411–1419

    Article  Google Scholar 

  27. Zhou C B, Zhou D. Robust dynamic surface sliding mode control for attitude tracking of flexible spacecraft with an extended state observer. Proc Inst Mech Eng Part G-J Aerosp Eng, 2017, 231: 533–547

    Article  Google Scholar 

  28. Yang J, Shi X P, Li L, et al. Nonlinear observer based time delay fault-tolerant attitude control for flexible spacecraft during orbit maneuver. In: Proceeding of the 27th Chinese Control and Decision Conference (CCDC), 2015. 50–57

  29. Zhong C X, Guo Y, Yu Z, et al. Finite-time attitude control for flexible spacecraft with unknown bounded disturbance. Trans Inst Meas Control, 2016, 38: 240–249

    Article  Google Scholar 

  30. Li B, Hu Q L, Yu Y B, et al. Observer-based fault-tolerant attitude control for rigid spacecraft. IEEE Trans Aerosp Electron Syst, 2017, 53: 2572–2582

    Article  Google Scholar 

  31. Pukdeboon C. Extended state observer-based third-order sliding mode finite-time attitude tracking controller for rigid spacecraft. Sci China Inf Sci, 2019, 62: 012206

    Article  MathSciNet  Google Scholar 

  32. Zhang L, Wei C Z, Wu R, et al. Fixed-time extended state observer based non-singular fast terminal sliding mode control for a VTVL reusable launch vehicle. Aerosp Sci Tech, 2018, 82: 70–79

    Article  Google Scholar 

  33. Hardy G, Littlewood J, Polya G. Inequalities. Cambridge: Cambridge University Press, 1952

    MATH  Google Scholar 

  34. Huang X Q, Lin W, Yang B. Global finite-time stabilization of a class of uncertain nonlinear systems. Automatica, 2005, 41: 881–888

    Article  MathSciNet  MATH  Google Scholar 

  35. Kollatc L. Problems on Eigenvalues. Moscow: Science, 1968

    Google Scholar 

  36. Bhat S P, Bernstein D S. Geometric homogeneity with applications to finite-time stability. Math Control Signal Syst, 2005, 17: 101–127

    Article  MathSciNet  MATH  Google Scholar 

  37. Yu S H, Yu X H, Shirinzadeh B, et al. Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica, 2005, 41: 1957–1964

    Article  MathSciNet  MATH  Google Scholar 

  38. Polyakov A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans Autom Control, 2012, 57: 2106–2110

    Article  MathSciNet  MATH  Google Scholar 

  39. Khalil H. Nonlinear Systems. Englewood Cliffs: Prentice-Hall Press, 2002

    MATH  Google Scholar 

  40. Basin M, Yu P, Shtessel Y. Finite- and fixed-time differentiators utilising HOSM techniques. IET Control Theory Appl, 2017, 22: 1144–1152

    Article  MathSciNet  Google Scholar 

  41. Lu K F, Xia Y Q, Fu M Y. Controller design for rigid spacecraft attitude tracking with actuator saturation. Inf Sci, 2013, 220: 343–366

    Article  MathSciNet  MATH  Google Scholar 

  42. Basin M V, Yu P, Shtessel Y B. Hypersonic missile adaptive sliding mode control using finite- and fixed-time observers. IEEE Trans Ind Electron, 2018, 65: 930–941

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Grant No. 61720106010), in part by Science and Technology on Space Intelligent Control Laboratory (Grant No. KGJZDSYS-2018-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanqing Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Xia, Y., Shen, G. et al. Fixed-time attitude tracking control for spacecraft based on a fixed-time extended state observer. Sci. China Inf. Sci. 64, 212201 (2021). https://doi.org/10.1007/s11432-019-2823-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-2823-9

Keywords

Navigation